Summary

Proceedings of the 2012 International Symposium on Nonlinear Theory and its Applications

2012

Session Number:A1L-D

Session:

Number:61

Cluster synchronization in large laser networks

Micha Nixon,  Moti Fridman,  Eitan Ronen,  Asher A. Friesem,  Nir Davidson,  Ido Kanter,  

pp.61-64

Publication Date:

Online ISSN:2188-5079

DOI:10.15248/proc.1.61

PDF download (759KB)

Summary:
Synchronization in large laser networks with both homogeneous and heterogeneous coupling delay times is examined. The number of synchronized clusters of lasers is established to equal the greatest common divisor (GCD) of network loops. We experimentally demonstrate up to sixteen multi-cluster phase synchronization scenarios within unidirectional coupled laser networks, whereby synchronization in heterogeneous networks is deduced by mapping to an equivalent homogeneous network. The synchronization in large laser networks is controlled by means of tunable coupling and self-coupling.

References:

[1] S. H. Strogatz, Nature 410, 268 (2001).

[2] E. Schoell, Nat. Phys. 6, 161 (2010).

[3] H. G. Schuster and W. Just, Deterministic Chaos (Wiley-VCH Verlag GmbH, Germany 2005).

[4] R. Albert and A.-L Barabasi, Rev. of Mod. Phys. 74, 47 (2002).

[5] M. E. J. Newman, SIAM Review 45, 167 (2003).

[6] K. E. Callan, et al., Phys. Rev. Lett. 104, 113901 (2010).

[7] A. Takamatsu, et al., Phys. Rev. Lett. 87, 7 (2001).

[8] Y. Aviad, et al., Optics Express, 20, 4352 (2012).

[9] B. Ravoori, et al., Phys. Rev. Lett. 107, 34102 (2011).

[10] M. Nixon, et al., Phys. Rev. Lett. 106, 223901 (2011).

[11] M. Nixon et. al. http://xxx.lanl.gov/abs/1112.4158 .

[12] I. Kanter, et al., EPL 93, 66001 (2011).

[13] I. Kanter, et al., EPL 93, 66003 (2011).

[14] R. Vardi, et. al., EPL 97, 66002 (2012).

[15] Loudon, R. The Quantum Theory of Light. Oxford: Oxford Univ. Press 2000.

[16] Commensurate ratios are defined within the resolution of the coherence time see M. Nixon, M. Fridman, E. Ronen, A. A. Friesem and N. Davidson, Opt. Lett. 34, 1864 (2009).

[17] M. Fridman, M. Nixon, A. A. Friesem and N. Davidson, Opt. Lett. 35, 1434 (2010).