Summary

Proceedings of the 2012 International Symposium on Nonlinear Theory and its Applications

2012

Session Number:C1L-B

Session:

Number:566

Spatiotemporal structure of the spontaneous activity of the brain: modeling and comparison to experimental data

Etienne Hugues,  Juan Vidal,  Jean-Philippe Lachaux,  Dante Mantini,  Maurizio Corbetta,  Gustavo Deco,  

pp.566-569

Publication Date:

Online ISSN:2188-5079

DOI:10.15248/proc.1.566

PDF download (802KB)

Summary:
When a subject is at rest, neural activity as recorded by EEG or MEG exhibits prominent alpha oscillations. Secondly and more recently, the fMRI BOLD signal fluctuations reveal a number of functional connectivity patterns, the so-called resting state networks (RSNs). Although these two phenomena are now well characterized, their neural origin remains a matter of debate. To study this question, we introduce a model of the spontaneous neural activity of the brain, comprising local excitatory and inhibitory neural networks connected via white matter fibers. The analysis and the simulation of this model reveals that neural activity is organized in modes, whose dominant ones are oscillatory and that we can identify to alpha oscillations. These modes are responsible for correlated activity in the alpha band but also in the BOLD. The model findings are found to agree with intracranial EEG and fMRI BOLD data in humans.

References:

[1] M. J. Brookes, M. Woolrich, H. Luckhoo, D. Price, J. R. Hale, M. C. Stephenson, G. R. Bames, S. M. Smith, P. G. Morris, “Investigating the electrophysiological basis of resting state networks using magnetoencephalography,” Proc. Natl Acad. Sci. USA, vol.108, pp.16783-16788, 2011;

[2] M. D. Fox, M. E. Raichle, “Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging,” Nature Rev. Neurosci., vol.8, pp.700-711, 2007.

[3] K. J. Friston, L. Harrison, W. Penny, “Dynamic causal modelling,” NeuroImage, vol.19, pp.12731302, 2003; P. M. Drysdale, J. P. Huber, P. A. Robinson, K. M. Aquino, “Spatiotemporal BOLD dynamics from a poroelatsic hemodynamic model,” J. Theor. Biol., vol.265, pp.524-534, 2010.

[4] P. Hagmann, L. Cammoun, X. Gigandet, R. Meuli, C. J. Honey, V. J. Wedeen, O. Sporns, “Mapping the structural core of human cerebral cortex,” PLoS Biol., vol.6, e159, 2008.

[5] D. Mantini, M. G. Perrucci, C. Del Gratta, G. L. Romani, M. Corbetta, “Electrophysiological signatures of resting state networks in the human brain,” Proc. Natl Acad. Sci. USA, vol.104, pp.13170-13175, 2007.

[6] M. Mattia, P. Del Giudice, “Population dynamics of interacting spiking neurons,” Phys. Rev. E, vol.66, 051917, 2002.

[7] R. Scheeringa, P. Fries, K. -M. Petersson, R. Oostenveld, I. Grothe, D. G. Norris, P. Hagoort, M. C. M. Bastiaansen, “Neuronal dynamics underlying high- and low-frequency EEG oscillations contribute independently to the human BOLD signal,” Neuron, vol.69, pp.572-583, 2011.

[8] R. Scheeringa, A. Mazaheri, I. Bojak, D. G. Norris, A. Kleinschmidt, “Modulation of visually evoked cortical fMRI responses by phase of ongoing occipital alpha oscillations,” J Neurosci., vol.31, pp.3813-3820, 2011.

[9] M. L. Schölvinck, A. Maier, F. Q. Ye, J. H. Duyn, D. A. Leopold, “Neural basis of global resting-state fMRI activity,” Proc. Natl Acad. Sci. USA, vol.107, pp.10238-10243, 2010.