Proceedings of the 2012 International Symposium on Nonlinear Theory and its Applications
2012
Session Number:B4L-D
Session:
Number:513
Information processing with recurrent dynamical systems: theory, characterization and experiment.
S. Massar, Y. Paquot, F. Duport, A. Smerieri, M. Massar, J. Dambre, M. Haelterman, B. Schrauwen,
pp.513-514
Publication Date:
Online ISSN:2188-5079
[1] H. Jaeger, The echo state approach to analysing and training recurrent neural networks, Fraunhofer Institute for Autonomous Intelligent Systems, Technical report: GMD Report 148, 2001.
[2] W. Maass,T. Natschlager, H. Markram, Real-time computing without stable states: A new framework for neural computation based on perturbations. Neural computation 14, 2531-2560, 2002.
[3] H. Jaeger, H. Haas, Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication, Science 304, 78-80, 2004.
[4] S. Massar and M. Massar, Mean Field Theory of Dynamical Systems Driven by External Signals, in preparation.
[5] M. Hermans and B. Schrauwen, Memory in linear recurrent neural networks in continuous time, Neural Networks 23, pp. 341-355, 2010
[6] J. Dambre, D. Verstraeten, B. Schrauwen and S. Massar, Information Processing Capacity of Dynamical Systems, submitted
[7] H. Jaeger, Short Term Memory in Echo State Networks, Fraunhofer Institute for Autonomous Intelligent Systems. Technical report:GMD report 152, 2002.
[8] Y. Paquot, B. Schrauwen, J. Dambre, M. Haelterman, S. Massar, Reservoir Computing: a Photonic Neural Network for Information Processing, In Proceedings of SPIE Vol. 7728 77280B-1, 2010
[9] L. Appeltant L et al., Information processing using a single dynamical node as complex system, Nature Communications 2, 468-472, 2011.
[10] Y. Paquot et al., Optoelectronic Reservoir Computing, Scientific Reports 2, 287, 2012
[11] L. Larger et al., Photonic information processing beyond Turing: an optoelectronic implementation of reservoir computing, Optics Express 20, 3241-3249, 2012