Summary

Proceedings of the 2012 International Symposium on Nonlinear Theory and its Applications

2012

Session Number:B4L-C

Session:

Number:502

Similarity Networks of the Functional Evolution of Cycles in Structural Networks

David M. Walker,  Antoinette Tordesillas,  Gary Froyland,  

pp.502-505

Publication Date:

Online ISSN:2188-5079

DOI:10.15248/proc.1.502

PDF download (480.1KB)

Summary:
We construct networks summarizing similarity of local mesoscopic cycle evolution within structural contact networks of quasistatically deforming dense granular materials. In essence, at each stage of the deformation, a contact network is created and a minimal cycle basis is calculated. For each grain we compare its local mesoscopic cycle topology across a specified strain (or temporal) interval and summarize this evolution in a similarity network. We propose a prescription for finding a suitably sized strain interval. Concentrating on times when stick-slip or jamming-unjamming behaviour is evident we relate properties of the similarity networks (e.g., community structures) to areas of failure throughout the material.

References:

[1] T. S. Majmudar and R. P. Behringer, “Contact force measurements and stress-induced anisotropy in granular materials,” Nature, vol.435, pp.1079-1082, 2005.

[2] A. L. Rechenmacher, S. Abedi, O. Chupin and A. D. Orlando, “Characterization of mesoscale instabilities in localized granular shear using digital image correlation,” Acta Geotechnica, vol.6, pp.205-217, 2011.

[3] S. A. Hall, M. Bornert, J. Desrues, Y. Pannier, N. Lenoir, G. Viggiani and P. B'esuelle, “Discrete and continuum experimental study of localised deformation in Hostun sand under tri-axial compression using x-ray µCT and 3D digital image correlation,” Geotechnique, vol.60, pp.325-322, 2010.

[4] P. Cundall and O. Strack, “A discrete numerical model for granular assemblies,” Geotechnique, vol.29, p.47, 1979.

[5] D. M. Walker and A. Tordesillas, “Topological evolution in dense granular materials: a complex networks perspective,” International Journal of Solids and Structures, vol.47, pp.624-639, 2010.

[6] A. Tordesillas, D. M. Walker Q. Lin, “Force cycles and force chains,” Physical Review E, vol.81, 011302, 2010.

[7] R. C. Arevalo, I. Zuriguel and D. Maza, “Topology of the force network in the jamming transition of an isotropically compressed granular packing,” Physical Review E, vol.81, 041302, 2010.

[8] D. M. Walker, A. Tordesillas, S. Pucilowski, Q. Lin, A. L. Rechenmacher and S. Abedi, ‘Analysis of grainscale measurements of sand using kinematical complex networks,” International Journal of Bifurcation and Chaos, 2011 accepted.

[9] A. Tordesillas, “Force chain buckling, unjamming transitions and shear banding in dense granular assemblies,” Philosophical Magazine, vol.87, pp.4987-5016, 2007.

[10] N. Estrada, E. Azema, F. Radjai and A. Taboada, “Identification of rolling resistance as a shape parameter in sheared granular media,” Physical Review E, vol.84, 011306, 2011.

[11] K. Cooper and M. Barahona, “Role-based similarity in directed networks,” arXiv:1012.2726v1 [physics.soc-ph] 13 Dec 2010.

[12] D. M. Walker A. Tordesillas, “Taxonomy of granular rheology from grain property networks,” Physical Review E, vol.85, 011304, 2012.