Summary

Proceedings of the 2012 International Symposium on Nonlinear Theory and its Applications

2012

Session Number:B3L-D

Session:

Number:454

Experimental Ranging System Using Exactly Solvable Chaos

Ned J. Corron,  Mark T. Stahl,  Jonathan N. Blakely,  

pp.454-457

Publication Date:

Online ISSN:2188-5079

DOI:10.15248/proc.1.454

PDF download (458KB)

Summary:
Experiments demonstrate an improved approach to ranging and detection by exploiting a solvable chaotic oscillator. This nonlinear oscillator includes an ordinary differential equation and a discrete switching state. The oscillator admits an exact analytic solution as the linear convolution of a symbolic dynamics and a basis function, which enables coherent reception using a simple analog matched filter. An acoustic ranging system is demonstrated that uses just simple analog and digital electronic circuit components.

References:

[1] K. M. Myneni, T. A. Barr, B. R. Reed, S. D. Pethel, and N. J. Corron, “High-precision ranging using a chaotic laser pulse train,” App. Phys. Lett. 78, 1496 (2001).

[2] B. C. Flores, E. A. Solis, and G. Thomas, “Assessment of chaos-based FM signals for range-Doppler imaging,” IEE Proc.-Radar Sonar Navig. 150, 313 (2003).

[3] F.-Y. Lin and J.-M. Liu, “Ambiguity functions of laser-based chaotic radar,” IEEE J. Quantum Elec. 40, 1732 (2004).

[4] F.-Y. Lin and J.-M. Liu, “Chaotic radar using nonlinear laser dynamics,” IEEE J. Quantum Elec. 40, 815 (2004).

[5] V. Venkatasubramanian and H. Leung, “A novel chaos-based high-resolution imaging technique and its application to through-the-wall imaging,” IEEE Signal Proc. Lett. 12, 528 (2005).

[6] T. L. Carroll, “Chaotic system for self-synchronizing Doppler measurement,” Chaos 15, 013109 (2005).

[7] T. L. Carroll, “Optimizing chaos-based signals for complex targets,” Chaos 17, 033103 (2007).

[8] Z. Liu, X. Zhu, W. Hu, and F. Jiang, “Principles of chaotic signal radar,” Int. J. Bifurcation Chaos Appl. Sci. Eng. 17, 1735 (2007).

[9] S. Qiao, Z. G. Shi, K. S. Chen, W. Z. Cui, W. Ma, T. Jiang, and L. X. Ran, “A new architecture of UWB radar utilizing microwave chaotic signals and chaos synchronization,” Prog. Electromagnetics Res. 75, 225 (2007).

[10] Z. G. Shi, S. Qiao, K. S. Chen, W. Z. Cui, W. Ma, T. Jiang, and L. X. Ran, “Ambiguity functions of direct chaotic radar employing microwave chaotic Colpitts oscillator,” Prog. Electromagnetics Res. 77, 1 (2007).

[11] T. L. Carroll, “Adaptive chaotic maps for identification of complex targets,” IET Radar Sonar Navig. 2, 256 (2008).

[12] T. Jiang, S. Qiao, Z. Shi, L. Peng, J. Huangfu, W. Z. Cui, W. Ma, and L. X. Ran, “Simulation and experimental evaluation of the radar signal performance of chaotic signals generated from a microwave Colpitts scillator,” Prog. Electromagnetics Res. 90, 15 (2009).

[13] J. N. Blakely and N. J. Corron, “Concept for low cost chaos radar using coherent reception,” Proc. SPIE 8021, 80211H (2011).

[14] N. J. Corron, J. N. Blakely, “Chaos for Communication and Radar,” Proc. NOLTA, 322 (2011).

[15] T. Tsubone and T. Saito, “Stabilizing and destabilizing control for a piecewise-linear circuit,” IEEE Trans. Circuits Syst. I 45, 172 (1998).

[16] N. J. Corron, J. N. Blakely, and M. T. Stahl, “A matched filter for chaos,” Chaos 20, 023123 (2010).

[17] G. L. Turin, “An introduction to matched filters,” IRE T. Inform. Theor. 6, 311 (1960).