Summary

Proceedings of the 2013 International Symposium on Nonlinear Theory and its Applications

2013

Session Number:C2L-D

Session:

Number:417

Stochastic resonance in the peripheral auditory system

Florian Gomez,  Stefan Martignoli,  Ruedi Stoop,  

pp.417-420

Publication Date:

Online ISSN:2188-5079

DOI:10.15248/proc.2.417

PDF download (358KB)

Summary:
The understanding and modeling of the peripheral hearing system (cochlea, outer and inner hair cells, auditory nerve and the lowest auditory nuclei) is a biophysics and scientific computing challenge. We have developed such a framework with real-time capacity. The model not only allows for a selective tuning towards desired sound components in cocktails of sounds. It, moreover, demonstrates the complicated change the auditory signal undergoes on its way higher up the auditory pathway. One intriguing property of the model is that it exhibits that the auditory pathway uses stochastic resonance, in order to relay the sound information gathered and generated in the cochlea higher up the auditory pathway in the most faithful way. Nontrivial manifestations of stochastic resonance in biology are extremely rare. In our case, the effect seems to express an explicit desire of the biological system to maintain artificial auditory signal components that are generated by the cochlear nonlinearities, the purpose of which at the moment we can only speculate on. A side-effect is, however, that it explains the surprising large degree of noise that we find in the firing of the neurons of the auditory nerves.

References:

[1] S. Martignoli and R. Stoop, Phys. Rev. Lett. 105, 048101 (2010).

[2] A. Kern and R. Stoop, Phys. Rev. Lett. 91, 128101 (2003).

[3] R. Stoop and A. Kern, Phys. Rev. Lett. 93, 268103 (2004).

[4] Supplementary material for [1]. Available online at http://prl.aps.org/supplemental/PRL/v105/i4/e048101.

[5] R. Stoop, A. Kern, M.C. Goepfert, D. Smirnov, T. Dikanev, B.P. Bezrucko, Europ. Biophys. J. 35, 511-516 (2006).

[6] V.M. Eguíluz, M. Ospeck, Y. Choe, A.J. Hudspeth and M.O. Magnasco, Phys. Rev. Lett. 84, 5232 (2000).

[7] E.A. Lopez-Poveda and A. Eustaquio-Martin, J. Assoc. Res. Otolaryngol. 7, 218 (2006).

[8] M.C. Liberman, J. Acoustic. Soc. Am. 63, 442 (1978).

[9] J.O. Pickles, An Introduction to the Physiology of Hearing, 3rd. Ed., Emerald Group, UK (2008).

[10] A.N. Temchin, N.C. Rich, andM.A. Ruggero, J. Neurophysiol. 100, 2899 (2008).

[11] M. Müller, D. Robertson and G.K. Yates, Hear. Res. 55, 50 (1991).

[12] R.F. Fox, I.R. Gatland, R. Roy, and G. Vemuri, Phys. Rev. A 38 (11), 5938 (1988).

[13] N.Y.-S. Kiang, T. Watanabe, C. Thomas, and L.F. Clark, Discharge Patters of Single Fibers in the Cat's Auditory Nerve, M.I.T. Research Monograph 35, MIT Press, Boston (1965).

[14] C.D. Geisler, Brain Res. 212, 198, (1981).

[15] N.F. Rulkov, I. Timofeev and M. Bazhenov, J. Comp. Neurosci. 17, 2033 (2004).

[16] S.S. Narayan, A.N. Temchin, A. Recio, M.A. Ruggero, Science 282, 1882-1884 (1998).

[17] E. de Boer, Nature 178, 535 (1956).

[18] J.F. Schouten, R.J. Ritsma, and B.L. Cardozo, J. Acoust. Soc. Am. 34, 1418 (1962).

[19] J.H.E. Cartwright, D.L. González and O. Piro, Phys. Rev. Lett. 82, 5389 (1999).

[20] L. Robles and M.A. Ruggero, Physiological Reviews 81, 1305 (2001).

[21] F. Jülicher, D. Andor, and T. Duke, Proc. Natl. Acad. Sci. U.S.A. 98, 9080 (2001).