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Abstract—The understanding and modeling of the pe-
ripheral hearing system (cochlea, outer and inner hair cells,
auditory nerve and the lowest auditory nuclei) is a bio-
physics and scientific computing challenge. We have devel-
oped such a framework with real-time capacity. The model
not only allows for a selective tuning towards desired sound
components in cocktails of sounds. It, moreover, demon-
strates the complicated change the auditory signal under-
goes on its way higher up the auditory pathway. One in-
triguing property of the model is that it exhibits that the
auditory pathway uses stochastic resonance, in order to re-
lay the sound information gathered and generated in the
cochlea higher up the auditory pathway in the most faithful
way. Nontrivial manifestations of stochastic resonance in
biology are extremely rare. In our case, the effect seems to
express an explicit desire of the biological system to main-
tain artificial auditory signal components that are generated
by the cochlear nonlinearities, the purpose of which at the
moment we can only speculate on. A side-effect is, how-
ever, that it explains the surprising large degree of noise
that we find in the firing of the neurons of the auditory
nerves.

1. Introduction

Among all human sensors, the hearing system has with-
stood an accurate physical description the longest. Recent
progress has revealed that hearing phenomena previously
believed to be located in the CNS are the consequences of
the nonlinear physics properties of the cochlea [1]. Here, in
continuation of this work, we describe what physics prin-
ciples are used to generate the biophysical and psychoa-
coustic hearing information along the hearing pathway up
to the auditory nerve. From a physics point of view, the
transduction of external sound towards the CNS involves
three components: The hearing sensor (cochlea), the at-
tached inner hair cells (IHC), and the auditory nerve neu-
rons (ANN). In the following, we will present exclusively
data from our software implementation of the compound
device (for consistency), though our hardware implementa-
tion yields essentially indistinguishable results. OurHopf
cochlea [2, 3, 1, 4] serves as the hearing sensor. The au-
ditory input signal first passes a Hilbert transform to ob-
tain the dimensionality required to drive Hopf systems that

act as nonlinear amplifiers. The Hopf cochlea faithfully
reflects mammalian sound processing (and beyond [5]):
Strong enhancement of weak and compression of strong
input signals, by large gain active nonlinear input amplifi-
cation. Phenomena emerging from this nonlinear behavior,
like combination tone and two-tone suppression laws, pro-
vide important tests for corroborating the validity of the
approach.

Our Hopf cochlea has an intrinsic mesoscopic design:
The frequency axis is discretized into a set of sections, each
section modeling the nonlinear amplification process along
a region of the basilar membrane. The discretization is flex-
ible; here, one section covers approximately a quarter oc-
tave. Each section is endowed with properties of the pas-
sive hydrodynamic behavior and an active Hopf amplifier.
The active part implements the Hopf normal form [6]

ż = (µ + j)ωcz− ωc|z|2z− ωcF(t), z ∈ C. (1)

Here, the vectors of the inputF(t) and outputz are complex
variables (j is the imaginary unit), andfc = ωc/2π is the
characteristic frequency of the section.µ is the tunable pa-
rameter that defines each section’s distance from the Hopf
bifurcation point atµ = 0. Each section is composed of
a Hopf amplifier followed by a section-specific 6th-order
Butterworth (low pass) filter modeling the viscous fluid
losses. For the results presented below, we use the param-
eters as in Refs. [1, 4]; we will display the responses of
the frequency channelsfc = 1760 Hz andfc = 440 Hz.
The responses of this cochlea are in perfect agreement with
biophysical measurements, for both amplitude and phase
of the propagating signal [4].
We have complemented this cochlea byinner hair cells
IHC, where the cochlear membrane stateVCo(t) is linearly
relayed to displacementsu of the IHC cilia according to
u(t) = 20 · 10−9 · VCo(t), which affect the IHC voltage
VIC according to the standard IHC model [7] (for the equa-
tions see the original article; we use the model’s standard
in vivo parameters). The dynamical role of IHC is to half-
wave rectify and slightly compress the signal: on top of a
frequency-dependent DC component, the output has now a
slightly low-pass filtered AC component [7].
The IHC signal feeds into the ANN. Biological ANN show
widely divergent response properties. At first view, their
extreme noisiness seems to work against their ability to
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Figure 1: ANN response classes. Upper panel: Black lines
from the standard parameter values of Table 1. Colored
lines are from the bracketed values of parameterA (red),
B (green),σ (purple) andτσ (orange). Spontaneous rates:
B = 0 (blue). Lower panel: Corresponding ANN spike
rates (fc = 1760 Hz). Cochlear information is relayed into
ANN spike rates that take care of different dynamic ranges,
but preserve the essentials of the cochlear signal (here on
linear spike rate scale, in Fig. 2 last row on logarithmic
scale).

convey precise hearing that crucially depends on precise
timing and frequency. Our study will, however, reveal that
the opposite is true and that there is a beneficial effect of
noise. Biological ANN fall into two main classes [8, 9, 10]:
High spontaneous ANN fire at a high rate even in the ab-
sence of input, whereas ANN from the other class require
substantial input for firing, with a tendency to phase-lock
onto the signal involving a substantial degree of jitter. Ona
finer level, this second class is often divided into a medium-
and a low-spontaneous ANN that mainly differ in their dis-
tances to firing threshold and maximal spike rate [10, 11].
In our approach, the transmission from IHC to ANN is con-
catenated into a time-sampled ANN inputI(tn). This input
is complemented by a strong contribution of noise, strongly
correlated in time, to reflect the nature of the neurotrans-
mitter release. As a result, we choseI(tn) to have the form

I(tn) = A + B · 20 ·
(

VIC(tn) − VIC,rest
)

+ σ · ξ(tn), (2)

where constantA has the effect of a firing threshold and
whereB scales IHC voltage to the evoked ANN current.ξ
is exponentially correlated synaptic noise of intensityσ, in-
dependent for each transmission channel (we use the algo-
rithm of Ref. [12], with a correlation time constantτσ. Our
paradigm would, however, work equally well with white
noise, though at a synapse, this would be less plausible).
With this form ofI(tn), noise can trigger spontaneous ANN
firing at low firing thresholds even in the absence of (other)
input. The correlation time of the noise was determined
by matching our approach with biological data [13]. Fol-
lowing the conjecture [14] that the distinguished postsy-
naptic potentials (sub-threshold for low-spontaneous, and
super-threshold for high-spontaneous ANN) are the conse-

A B γhp σ τσ
Hs : 0(−0.02) 1(0.8) 0.97 0.1(0.2) 3(5)
Ms : −0.2(−0.25) 1.25(1.15) 0.5 0.06(0.04) 3(5)
Ls : −0.2(−0.25) 1.05(1.15) 0.5 0.04(0.06) 3(5)

Table 1: Parameter values of the three ANN classes. Values
in brackets correspond to the parameter variations in Fig. 1
exhibited by colored lines.

quence of the different biological wiring, we useA = 0
for the high- andA = −0.2 for the low- and medium
spontaneous classes, and ensure that low- and medium-
spontaneous ANN need, in addition to the continuous part
of I(t), a noise contributionξ(t) to cross the spiking thresh-
old. For appropriate parameter values, the membrane po-
tential xn of Rulkov’s spike-afterhyperpolarization neuron
model [15]

xn+1 =































(v := yrs + βhpyn + β
eIn)

α
1−xn
+ v, xn ≤ 0,

α + v, 0 < xn < α + v; xn−1 ≤ 0,
−1, xn ≥ α + v; or xn−1 > 0,

(3)

yn+1 = γhpyn −

{

ghp if n-th iteration spiked,
0 otherwise,

reproduces the characteristic biological spike trains of the
different ANN classes indistinguishably from biology. In
this model,yn is a slow hyperpolarizing current, whereas
constantyrs defines the resting potential.In represents the
external driving current. A spike is generated every time
xn attains its maximum value. Spike frequency and spike
strength are controlled by the parametersγhp andghp. Upon
constant input current, the nonlinear functionxn+1 = f (. . .)
generates a (jittered) limit-cycle behavior. We use param-
eter valuesα = 3.8, yrs = −2.9, bhp = 0.5, ghp = 0.1
andbe = 0.1 [15] and modify the original timescale by a
factor of ten. This yields a sampling rate of 20 kHz that
is maintained throughout the compound system, to account
for very fast spiking ANN, and generates an almost linear
I- f curve [15]. The typical responses of the three ANN
classes (cf. [11]) are reproduced in Fig. 2 by stimulating
the map with a single tone atfc for varying input inten-
sity at one of the three standard parameter sets of Table
I (black lines). The colored lines contained in the figures
demonstrate that all biologically observed profiles can be
generated by the model by sweeping the parameters across
intervals around the standard values, without ever running
into non-physiological responses.

2. Compound model performance:

Across the different stages of the compound system, the
cochlear information is essentially preserved. In Fig. 2, the
outputs of the Hopf cochlea (top panel), of the IHC (second
and third panels) and of the ANN (lowest panel) are shown,
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for two frequency channels. For the experiments, a single
tone with fixed amplitude was fed into the Hopf cochlea,
sliding input frequencies from 0.2 fc to 1.5 fc. To cover an
input range from−60 dB1V up to 0 dB1V , the experiment
was repeated in steps of 10 dB. At the Hopf cochlea, the
amplitude of the (single tone)-oscillation was measured;
at the IHC, the amplitudes of both the AC- and the DC-
components were measured. At the level of the ANN, the
amplitude of the neuronal firing was measured in terms of
spike rates.
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Figure 2: Output amplitudes (logarithmic scale) as a func-
tion of input frequency (linear scale). Lines represent con-
stant cochlear input intensities, from−60 dB1V = 1 mV
(lowest) to -10 dB1V (uppermost line), in steps of 10 dB.
The characteristic cochlear information is preserved across
the different stages of transcription.

From these measurements it follows that all essential
features of the mammalian cochlea are faithfully repro-
duced. The most prominent easily verifiable ones are the
strong amplification of faint sounds, compressive non-
linearity of exponent one-third, left-shift of the response
peaks upon an increase of the input amplitude and charac-
teristic broadening of particularly the low frequencies for
low input amplitudes [6, 2, 1, 4]. IHC low-pass filtering
(c.f. Fig. 2 fc = 1760 Hz) is accompanied by strong input
sound compression (c.f.fc = 440 Hz) [7]. Upon feeding
the IHC signal into the ANN, spikes recover the original
quality of the cochlear response (Fig. 2, last row, for
high-spontaneous ANN). High-spontaneous neurons show
a quicker saturation for loud sounds, low-spontaneous

neurons only respond above an input intensity of∼ −30
dB, thereby taking care of different dynamic ranges. On
the linear spike rate scale, each class faithfully transmits
the essentials of the Hopf cochlea output (Fig. 1, last panel
vs. Fig. 2, first panel), but each on a dynamic range of
its own. On the typical dynamic ranges transmitted, all
three neuron classes fully retain the cochlear information
(Fig. 1). Generated tuning curves (an often used alternative
to characterize auditory response by iso-intensity tuning
curves) for BM cochlea motion and for the different ANN
are very similar. Moreover, they agree with the biological
data [16, 10] that serve as the guideline for a faithful
transduction from cochlea to CNS [16].

3. Suprathreshold stochastic resonance

To what extent presence of noise plays a distinguished
role in achieving this performance we shall exhibit by a
pitch-shift experiment [17, 18]. If an AM sound withfcar =

850 Hz andfmod = 200 Hz is fed into the cochlea (at an
amplitude of−17dB1V ), this corresponds to a pitch-shift
experiment withf0 = 200 Hz, k = 4 andδ f = 50 Hz,
generating aperceived pitchfp = f0 +

δ f
k = 212.5 Hz,

equivalent to a period of 4.7 [ms] [17, 18, 19, 1].
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Figure 3: Suprathreshold stochastic resonance of high/low-
medium spontaneous ANN (upper/lower panel). a) Spike
trains of one/four neuron(s), b) instantaneous spiking fre-
quency distribution at the indicated noise level, c) proba-
bility p for the instantaneous frequency to coincide with
frequency of the perceived pitchfp, for variable noise lev-
elsσ.

Fig. 3 shows measurements taken atfc = 880 Hz, in
the regime where the perceived pitch (measured as the first
most prominent peak of the ISI distribution), is known to
follow de Boer’s first pitch shift rule [1]. In the absence of
noise, high spontaneous neurons would quickly lock onto
the signal, i.e., onto the modulation frequency (200 Hz,
5[ms]). It is only upon the addition of noise, that a distri-
bution with a main peak at the perceived pitchfp emerges.
Sets of low-medium spontaneous neurons (that cannot di-
rectly encodefp in their instantaneous frequencies), when
driven by identical signals but independent noise, generate
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an almost regular spike pattern, with a clear instantaneous
frequency peak at locus of the perceived pitchfp (the ”vol-
ley principle” of auditory nerve coding). Fig. 3 demon-
strates that this encoding of the perceived pitch in ANN
spike rates bequests a nonzero amount of noise. Clearly,
our simple median-based measurep(σ) neither takes ac-
count of more global properties of the distribution, nor of
how the pitch is finally extracted from the ANN (which
may be the origin of the minor mismatch between the op-
timal noise in Table I vs. the optimal noise in Fig. 3), but
otherwise our observations are very stable and consistent.

4. Discussion

From the peripheral hearing system, ever more details
are known of the parts involved. How these parts func-
tionally work together, however, has remained a challenge.
Our full model of the peripheral hearing system is based
on the principles of nonlinear physics and includes in a de-
tailed manner the facts known from biology. Our model
is in a sense minimal: the design of the cochlea, the inner
hair cells, and the auditory nerve neurons, are extremely
simple. Yet, our model not only reproduces all salient bio-
logical measurements to great accuracy, it also emphasizes
the important role of synaptic noise in the transmission of
salient hearing features, from the continuous basilar mem-
brane motion to the discrete spiking world of the CNS. We
demonstrated on the basis of physics that all nonlinear fea-
tures of the auditory nerve can indeed be traced back to the
active amplification process within the cochlea, a conclu-
sion made previously on the basis of physiology [20].

A novel observation is that suprathreshold stochastic
resonance seems to be necessary to enable the correct
transition from IHC to ANN. In that respect we provide an
important example of, and argument for, the omnipresence
of noise in the nervous system. Audition is a particularly
intriguing place for such an observation, as the mammalian
hearing system is famous for its high temporal precision
and reliability. In this sense, our approach opens the
perspective upon a novel construction paradigm for high-
precision information processing based on noisy elements,
that circumvents bottlenecks encountered by current
technology, particularly in chip design. Beyond this and
offering new insights in hearing research, our model can
serve as a template for faithfully transducing continuous
into discrete-time systems, exceeding conventional high
frequency sampling methods in efficacy and robustness.
Due to its simple biological blueprint, it was simple to
also realize the model in hardware, which yielded virtually
coincident results.
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