Summary

Proceedings of the 2012 International Symposium on Nonlinear Theory and its Applications

2012

Session Number:C2L-D

Session:

Number:670

Frequency-Modulated Time-Delayed Microwave Chaotic Oscillator

Hien Dao,  John C. Rodgers,  Thomas E. Murphy,  Rajarshi Roy,  

pp.670-673

Publication Date:

Online ISSN:2188-5079

DOI:10.15248/proc.1.670

PDF download (1.5MB)

Summary:
We report a chaotic frequency-modulated (FM) microwave source with time-delayed feedback. The system supports dynamical behaviors ranging from periodic to high-dimensional chaos, depending on the feedback gain and filter band-width. The experimental implementation uses both microwave and digital components to achieve the nonlinearity and time-delayed feedback, respectively. We discuss the possible applications in range and velocity sensing.

References:

[1] G. Mykolaitis, A. Tamasevicius, A. Cenys, S. Bumeliene, A. N. Anagnostopoulos, and N. Kalkan, “Very High and Ultrahigh Frequency Hyper-chaotic Oscillator with Delay Line,” Chaos Solitons Fractal, vol. 17, pp. 343-347, 2003.

[2] J. N. Blakely, L. Illing, and D. J. Gauthier, “High-Speed Chaos in an Optical Feedback System with Flexible Timescales,” IEEE J. Quantum Electron, vol. 40, pp. 299-305, 2004.

[3] J. T. Gleeson, “Truly Random Number Generator Based on Turbulent Electro-Convection,” Appl. Phys. Lett., vol. 81, p. 1949, 2002.

[4] K. Myneni, T. A. Barr, B. R. Reed, S. D. Pethel, and N. J. Corron, “High-Precision Ranging using Chaotic Laser Pulse Train,” Appl. Phys. Lett., vol. 74, pp. 1496-1498, 2001.

[5] K. Ikeda and K. Matsumoto, “High-dimensional Chaotic Behaviors in Systems with Time-delayed Feedback,” Physica D, vol. 29, pp. 223-235, 1987.

[6] A. B. Cohen, B. Ravoori, T. E. Murphy, and R. Roy, “Using Synchronization for Prediction of High-Dimensional Chaotic Dynamics,” Phys. Rev. Lett., vol. 101, p. 154102, 2008.

[7] L. Illing and D. J. Gauthier, “Ultra-high-frequency Chaos in a Time-delay Electronic Device with Band-Limited Feedback,” Chaos, vol. 16, p. 033119, 2006.

[8] J. D. Farmer, “Chaotic Attractors of an Infinite-dimensional Dynamical System,” Physica D, vol. 4, no. 3, pp. 366-393, 1982.