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Abstract—We report a chaotic frequency-
modulated (FM) microwave source with time-delayed
feedback. The system supports dynamical behaviors
ranging from periodic to high-dimensional chaos,
depending on the feedback gain and filter band-
width. The experimental implementation uses both
microwave and digital components to achieve the
nonlinearity and time-delayed feedback, respectively.
We discuss the possible applications in range and
velocity sensing.

1. Introduction

Since the 1950s, chaos has developed into a new
science because of its universality and applicability.
The fact that a chaotic signal is complex and noise-
like makes it an ideal candidate for communication
and ranging applications. One can think of employing
chaotic signals in sensor networks to provide security
when transferring information [1, 2]. The short corre-
lation time of chaotic signals can be useful in applica-
tions that require random signal generation [3]. Chaos
also can have a wide bandwidth, which is useful for in-
creased precision of transmitted signals in radar and
sonar systems [4]. After being introduced by Ikeda in
[5], the time delayed feedback loop has proved to be
an effective method to produce chaos in many experi-
mental systems such as laser systems [6] and electron-
ics circuit [7]. The chaotic signals produced by these
systems are examples of amplitude chaos, i.e., a signal
with an irregular time-varying amplitude or envelope.
However, for some applications in communication, it
is preferable to use phase chaos, in which the chaotic
signal has a constant amplitude and a chaotic phase
or frequency.

Because most communication and ranging systems
using microwave frequencies, a chaotic system oper-
ates in this regime is of considerable interest for prac-
tical applications. Although there are many classical
electrical circuits that can produce broadband chaotic
waveforms, it is difficult to scale these systems to the
microwave frequencies because in high speed systems

the time delay associated with signal propagation is
often non-negligible in comparison to the dynamical
timescales.

In this paper, we describe a microwave FM chaotic
oscillator with a time-delayed feedback loop. This
architecture can take advantage of the unavoidable
signal propagation delays in electronic systems. The
high-speed FM chaotic signal could also offer advan-
tages such as low probability of detection or intercep-
tion in radar systems, reduced interference with exist-
ing channels, and less susceptibility to noise or jam-
ming than normal transmitted signals in sensor net-
works.

2. Microwave Time-delayed Feedback Loop
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Figure 1: Experimental system used to pro-
duce chaotic frequency-modulated microwave signals.
The system uses a conventional microwave voltage-
controlled oscillator (VCO) with a self-homodyne mi-
crowave frequency discriminator to produce a sinu-
soidal nonlinearity. The output is then fed back to
the input through a time-delayed lowpass filter.

The microwave system shown in Fig. 1 uses com-
mercially available devices with a time-delayed feed-
back architecture to produce chaotic microwave sig-
nals. The nonlinear function of the system is pro-
duced by a conventional voltage-controlled oscillator
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(VCO) and a self-homodyne microwave frequency dis-
criminator comprising a splitter, a microwave cable
and a double-balanced mixer. The VCO is a FM de-
vice which produces a constant-amplitude microwave
signal whose frequency varies linearly with the applied
voltage vtune. The signal generated by the VCO is
split into two identical copies, one of which is delayed
with respect to the other through the microwave ca-
ble. These two phase-modulated signals are then sent
to the input ports of the mixer to provide a baseband
output signal, vmixer, which is a sinusoidal function
of frequency of the VCO. With the exception of the
microwave delay line, which was constructed using a
small coil of semirigid coaxial cable, all elements of
the nonlinearity were soldered onto a printed circuit
board and interconnected with microstrip waveguides
designed to have a 50Ω impedance. Fig. 2 plots the ex-
perimentally measured sinusoidal relationship between
the tuning voltage vtune and the mixer output vmixer,
together with a best-fit sinusoid. From these measure-
ments, one can determine the two constants: an am-
plitude A = 0.2 V and the voltage needed to make 2π
phase shift, V2π = 0.5 V. The deviation from a perfect
sinusoidal nonlinearity is attributed to small, non-ideal
dependence of the VCO power on the applied voltage
vtune.

The time delay and lowpass filter were implemented
digitally using a programmable logic board (Altera
Cyclone FPGA). The delay time corresponds to the
length of a digital shift register while the filter func-
tion was obtained by programming a discrete-time fil-
ter. The input to the FPGA was obtained by an 8-bit
analog to digital converter, sampled at 75 Ms/s, and
the output was likewise provided by a synchronously
sampled 10-bit digital-to-analog converter. The criti-
cal parameters of the system, such as the filter time-
constant, signal delay time and feedback gain could
be conveniently adjusted through re-programming the
FPGA.

As indicated in Fig. 2, output of the mixer may be
described by

vmixer(t) = A cos

(
2π
vtune(t)

v2π
+ φ0

)
(1)

where the factor A is related to the loop gain and mi-
crowave power and the phase φ0 is determined by the
offset frequency of the VCO (i.e., the VCO frequency
when vtune = 0.)

The lowpass filter and time delay in the feedback
loop can be modeled by the simple first-order differen-
tial equation,

τlpf
d

dt
vtune(t) + vtune = vmixer(t− τ) (2)

where the τlpf denotes the time-constant of the lowpass
filter and τ is the feedback time delay. Taken together,
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Figure 2: Experimentally measured relationship be-
tween the input vtune and output vmixer for a VCO
followed by a self-homodyne frequency discriminator
comprising a 10 ns microwave delay line and a mixer.
The solid curve indicates the best-fit sinusoidal func-
tion. From these measurements, one can determine the
two constants A = 0.2 V and v2π = 0.5 V, as shown.

the tuning voltage can be described by the following
first-order delay differential equation:

τlpf
dvtune
dt

+vtune = A cos

(
2π
vtune(t− τ)

v2π
+ φ0

)
(3)

This equation can be re-cast in terms of the normalized
dimensionless amplitude x, defined as

x(t) ≡ 2π
vtune(t)

v2π
(4)

and the time variable t may be likewise normalized in
terms of the round-trip delay time τ . This in turn
gives the normalized delay differential equation:

a
d

dt
x(t) = −x(t) + β cos [x(t− 1) + φ0] (5)

where t is now understood to represent the dimen-
sionless time (measured in units of τ), and the two
dimensionless constants R and a are defined by

β ≡ 2π
A

v2π
, a ≡ τlpf

τ
(6)

For the measurements reported here, the lowpass
filter was designed to have a cutoff frequency of 1.35
MHz, which corresponds to a time-constant of τlpf =
118 ns. The feedback delay was adjusted to τ = 1
µs, so that a = 0.118. The phase offset was held con-
stant at φ0 = −π/2, while the gain β was adjusted by
programming the FPGA.

3. The Route to Chaos

In addition to experimental observations, (5) was
numerically integrated to study the dynamical behav-
ior. Following the method of Farmer [8], we divide the
time delay into small discrete time-steps, which allows
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Figure 3: Time evolution of the system observed ex-
perimentally (left) and simulated numerically (right)
as the feedback strength β is varied. β = 2.4 (a,d), β
= 2.7 (b,e), β = 3 (c,f)

the delay differential equation to be approximated by
a discrete-time vector map equation that can be easily
and efficiently solved.

As the feedback gain increases, the dynamics of the
system varies from steady state and oscillatory, to
quasiperiodic to chaotic. Fig. 3 shows typical exper-
imentally observed and numerically simulated, time
traces of the input of the VCO, vtune, for three choices
of feedback strength β. For β < 2.3, the system has
a fixed point solution which is stable, and at R = 2.3,
the stable fixed point undergoes a Hopf bifurcation
into a periodic state with an approximate period of 4τ
(0.25 MHz), as shown in Fig. 3(a,d). The amplitude of
x(t) also increases with the feedback gain. At β = 2.65
the system again enters a quasi-periodic state in which
the period is 2τ (0.5 MHz), as in Fig. 3(b,e). As the
feedback strength is further increased, the system un-
dergoes a series of period-doubling bifurcations, even-
tually leading to chaos. For β > 3, both simulation
and experiment show irregular, aperiodic behavior, as
depicted in Fig. 3(c,f).

The route to chaos is further illustrated by bifur-
cation diagrams and the calculation of the maximum
Lyapunov exponent of the system shown in Fig. 4.
The bifurcation diagram (both experimental and sim-
ulated) was obtained by constructing a color scale his-
togram of characteristic time traces as the feedback
strength β was smoothly increased from 2.3 to 3.5.
The simulated and observed bifurcation diagrams are
qualitatively similar, and while the precise locations of
bifurcation points do no exactly match, all of the rele-
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Figure 4: Bifurcation diagrams of the system are con-
structed by using a color histogram functions on time
traces as the feedback strength β is smoothly varied
from 2.3 to 3.5. (a) Experimental data from the 8-
bit oscilloscope, (b) Numerical data from Matlab, (c)
Largest Lyapunov exponents calculated by solving lin-
earized system equation.

vant dynamical behaviors are observed in each region.

The lower panel of Fig. 4 shows the calculated
largest Lyapunov exponent of the system, obtained
by linearizing Eq. 5 about its dynamical state. The
regions with positive Lyapunov exponent confirm the
existence of chaos in the system. For the time traces
shown in Fig. 3(c,f), the calculated Lyapunov expo-
nent is 0.715 (1/ms). When the VCO is modulated by
this chaotic signal, the resulting RF signal is an ape-
riodic frequency-modulated signal, i.e., phase chaos.

4. Chaotic FM Radar

Chaotic FM microwave signals could potentially find
applications in ranging and radar systems, which could
benefit from the broadband noise-like nature of the sig-
nal. The aperiodicity of a chaotic FM signal can pro-
vide lower probability of detection or interception and
reduces the susceptibility to interference from/with
other microwave channels.

To compare the effectiveness in target detection,
we compute the ambiguity function of the microwave
chaotic signal:

χ(τ, f) =

+∞∫
−∞

s(t)s∗(t− τ)e−i2πfτdt (7)

where s(t) is the frequency-modulated microwave sig-
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Figure 5: The calculated ambiguity functions of the
continuous waveform (a), a periodic FM signal (b) and
a chaotic FM signal (c). The function is calculated
using Fourier transform with center frequency f0 on
complex signals as velocity and the range of the target
are varied.

nal,

s(t) = exp

(
i2πγ

∫
vtune(t)dt

)
(8)

and γ is the tuning coefficient of the VCO (typically
given in MHz/V).

The ambiguity function is a two-dimensional func-
tion of τ and f , which represent time-delay and
Doppler shift of the reflected signal, respectively. The
ambiguity function provides information about how
well a matched receiver can unambiguously measure
the range (τ) and velocity (f) of a signal.

Fig. 5 shows a contour plot of the magnitude
|χ(τ, f)|, illustrating the advantages of using a chaotic
FM signal in range and velocity sensing. Fig. 5a was
obtained by using a continuous-wave microwave signal
(i.e., vtune = constant), for which the range cannot
be unambiguously determined, as expected. Fig. 5b
was obtained using a periodic vtune, in which case the
Doppler shift (f) can be more accurately estimated,
and the position can also be determined. Because the
modulation is periodic (with a period of approximately
4 µs), the range can only be determined up to an ad-
ditive integral multiple of 4 µs. Fig. 5c was obtained
using a larger feedback strength, for which the modu-
lation is chaotic. In this case, the system is predicted
to yield more precise and unambiguous measurement
of both range and velocity.

5. Conclusion

We demonstrated a microwave time-delayed feed-
back loop utilizing both microwave and digital com-
ponents. The dynamics of the loop can be modeled by
a time delay differential equation. We discussed the
route to chaos of the system with a first order lowpass
filter by showing characteristic time traces along with
bifurcation diagrams. The numerical results agreed
with the experimentallyl observed data. The existence
of chaos in the system was proven with the calcula-
tion of the Lyapunov exponents. We also numerically
considered the advantages of the chaotic FM signal in

radar and ranging applications by calculating the am-
biguity function, showing the improvement on perfor-
mance that can be obtained through the use of chaotic
FM waveforms.
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