Summary

Proceedings of the 2012 International Symposium on Nonlinear Theory and its Applications

2012

Session Number:B4L-B

Session:

Number:485

Spike timing-dependent plasticity in sparse recurrent neural networks

Hideyuki Kato,  Tohru Ikeguchi,  

pp.485-488

Publication Date:

Online ISSN:2188-5079

DOI:10.15248/proc.1.485

PDF download (865.5KB)

Summary:
Spontaneous neuronal activity is observed in many areas of the brain and an important property of cortical and hippocampal neural circuits. Neuronal avalanche is a quite interesting phenomenon and much paid attention in both experimental and theoretical studies. In some theoretical works, neuronal avalanche reproducible network models were proposed, that are constructed using a specific wiring manner. However, how neuronal circuits organize such a network architecture?
In this study, we address to this question from a viewpoint of self-organization of neural networks with Hebbian plasticity, and show that spike timing-dependent plasticity (STDP) provides an architecture that can reproduce neuronal avalanches. The point in this study is that applied input is spatiotemporally patterned and some neurons share the applied input. Our results suggest that the spatiotemporally patterned neuronal firings observed in the cortices and hippocampus play a crucial role for organization of avalanche reproducible neural circuits.

References:

[1] J. M. Beggs and D. Plenz (2003), The Journal of Neuroscience, 23(35):11167-11177.

[2] E. D. Gireesh and D. Plenz (2008), Proceedings of the National Academy of Science of the United States of America, 105(21):7576-7581.

[3] T. Petermanna, T. C. Thiagarajana, M. A. Lebedevb, M. A. L. Nicolelisb, D. R. Chialvoc, and D. Plenza (2009), Proceedings of the National Academy of Science of the United States of America, 106(37):15921-15926.

[4] T. L. Ribeiro, M. Copelli, F. Caixeta, H. Belchior, D. R. Chialvo, M. A. L. Nicolelis, and S. Ribeiro (2010), Public Library of Science One, 5(11):e14129.

[5] J. M. Beggs and D. Plenz (2004), The Journal of Neuroscience, 24(22):5216-5229.

[6] A. Levina, J. M. Herrmann, and T. Geisel (2006), Advances in Neural Information Processing Systems, 18:771-778.

[7] L. de Arcangelis, C. Perrone-Capano, and H. J. Herrmann (2006), Physical Review Letters, 96:028107.

[8] J. Teramae and T. Fukai (2007), Journal of Computational Neuroscience, 22:301-312.

[9] L. F. Abbott and R. Rohrkemper (2007), Progress in Brain Research, 165:13-19.

[10] N. Levy, D. H. I. Meilijson, and E. Ruppin (2001), Neural Networks, 14:815-824.

[11] K. Kitano, H. Câteau, and T. Fukai (2002), NeuroReport, 13(6):795-798.

[12] N. Masuda and H. Kori (2007), The Journal of Computational Neuroscience, 22:327-345.

[13] H. Câteau, K. Kitano, and T. Fukai (2008), Physical Review E, 77:051909.

[14] Y. K. Takahashi, H. Kori, and N. Masuda (2009), Physical Review E, 79:051904.

[15] W. R. Softky and C. Koch (1993), The Journal of Neuroscience, 13(1):334-350.

[16] R. Hosaka, O. Araki, and T. Ikeguchi (2008), Neural Computation, 20(2):415-435.

[17] S. Oono, H. Kato, and T. Ikeguchi (2010), The IEICE Transactions on Fundamentals of Electronics, Communications and Computaer Sciences (Japanese Edition), J94-A(2):52-63.

[18] S. Oono, H. Kato, and T. Ikeguchi (2011), in Proceedings of the Nonlinear Theory and its Applications (NOLTA2011) pp. 589-592.

[19] E. M. Izhikevich, J. A. Gally, and G. M. Edelman (2004), Cerebral Cortex, 14:933-944.

[20] S. Song, K. D. Miller, and L. F. Abbott (2000), Nature Neuroscience, 3(9):919-926.

[21] Z. Nádasdy, H. Hirase, A. Czurkó, J. Csicsvari, and G. Buzsáki (1999), The Journal of Neuroscience, 19(21):9497-9507.

[22] Y. Ikegaya, G. Aaron, R. Cossart, D. Aronov, I. Lampl, D. Ferster, and R. Yuste (2004), Science, 304:559-564.

[23] M. N. Shadlen and W. T. Newsome (1998), The Journal of Neuroscience, 18(10):3870-3896.

[24] T. Tetzlaff, S. Rotter, E. Stark, M. Abeles, A. Aertsen, and M. Diesmann (2008), Neural Computation, 20:2133-2184.