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Abstract— Spontaneous neuronal activity is observed
in many areas of the brain and an important property of cor-
tical and hippocampal neural circuits. Neuronal avalanche
is a quite interesting phenomenon and much paid attention
in both experimental and theoretical studies. In some the-
oretical works, neuronal avalanche reproducible network
models were proposed, that are constructed using a specific
wiring manner. However, how neuronal circuits organize
such a network architecture?

In this study, we address to this question from a view-
point of self-organization of neural networks with Hebbian
plasticity, and show that spike timing-dependent plasticity
(STDP) provides an architecture that can reproduce neu-
ronal avalanches. The point in this study is that applied in-
put is spatiotemporally patterned and some neurons share
the applied input. Our results suggest that the spatiotem-
porally patterned neuronal firings observed in the cortices
and hippocampus play a crucial role for organization of
avalanche reproducible neural circuits.

1. Introduction

Recent studies revealed a novel mode of neuronal ac-
tivity in which synchronized firings were propagated, that
was termed neuronal avalanche because of its similarity of
the size and duration properties to the avalanche in moun-
tains [1]. The neuronal avalanches were observed not only
in vitro [1, 2] but also in vivo [3, 4], and considered as phe-
nomena related to the memories and behaviors since the
avalanches were reproducible in the scale of hours [5].

In the theoretical studies, there are a number of studies
showing the scaling manner in the neuronal activity [6–9].
In 2007, a network model that could reproduce the statis-
tics of neuronal avalanches with a spiking neuron model
was proposed [8]. In the model, some feedforward sub-
networks were embedded and a few feedback connections
were added in accordance with a specific wiring manner,
however, this study gives rise to a new question: how do
neural circuits obtain such an architecture?

One of the possibilities is the learning. Some recent the-
oretical studies showed that STDP could be a source of
feedforward architectures when neurons in networks be-
haved as oscillators [10–14]. These studies are quite in-
teresting with respect to the organization of feedforward

Figure 1: Schematic diagram of our network model. Blue
and red nodes represent excitatory and inhibitory neurons.
Light blue nodes correspond to external neurons. Black
and red arrows are excitatory and inhibitory synaptic con-
nections, respectively.

architectures, but it seems to be impossible to observe neu-
ronal avalanches because, different from the model in Ref.
[8], only one large feedforward architecture is organized.
In addition, cortical and hippocampal neurons irregularly
fire and do not behave as oscillators [15]. In the case where
neurons in networks are under excitable state, it was shown
that spatiotemporally patterned input made network archi-
tecture feedforward-like [16].

Taking into account these studies, we proposed a model
that was a neuronal avalanche reproducible network [17,
18]. This network model did not need any specific wiring
manners and spontaneously organized through STDP. In
this model, it was successful in achieving a certain level
of realizing the scaling property in size and lifetime of
avalanches, but the model left room for improvement. One
of the aims of this study is improving this model. Based
on the model, we remodel neural networks that are sponta-
neously organized and able to realize the statistics of neu-
ronal avalanches. In addition to the improvement, we ana-
lyze influences of the noisy input rate during and after the
learning on the construction of the neuronal avalanche re-
producible networks.
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2. Materials and Methods

A network model considered in this study includes N(=
10, 000) excitatory neurons (blue nodes in Fig. 1) and N/4
inhibitory neurons (red nodes in Fig. 1), and these neu-
rons are interacted through chemical synapses (arrows in
Fig. 1). The connection probability is 10% and neurons are
randomly connected, but connections between inhibitory
neurons are avoided. The dynamics of each neuron is de-
scribed by the following equations

v̇ j = 0.04v2
j + 5v j + 140 − u j + I j(t),

u̇ j = a j(b jv j − u j),
(1)

where v j and u j are respectively reset to c j and u j + d j,
when v j reaches 30 mV. In Eq. (1), v j and u j are the
membrane potential and the recovery variable [19]. In
the initial condition, the variables v j and u j are set as
v j ∈ [−70,−50] and u j ∈ [−8,−6], respectively. To achieve
heterogeneity, for excitatory neurons, (a j, b j) = (0.02, 0.2)
and (c j, d j) = (−65, 8) + (15,−6)r2, while (a j, b j) =
(0.02, 0.25) + (0.08,−0.05)r and (c j, d j) = (−65, 2) for
inhibitory neurons, where r represents a random number
[19]. Synaptic current is modeled as I j(t) =

∑
i wi jδ(t − tk

i ),
where wi j is the synaptic strength from the ith neuron to the
jth neuron, and tk

i is the kth spike of the ith neuron of the
jth neuron.

Each neuron is stimulated by noisy input that obeys the
independent Poissonian manner at f Hz. The strength of
each pulse input is fixed during the simulation and set to 3.1
and 3.41 for excitatory and inhibitory neurons, respectively.

In addition to the noisy input, n(= 125) external neu-
rons (light blue nodes in Fig. 1) also stimulate neurons in
the network. The dynamics of the external neurons is also
given by Eq. (1), but the input is different from neurons in
the network. The input to the external neurons is constant
and its strength is 5, which induces periodical firings. In or-
der to avoid synchronization, the initial values of v j and u j

of the external neurons are varied as v j ∈ [−120,−50] and
u j ∈ [−8, 100]. Each external neuron has m(= 65) feed-
forward connections to neurons in the network, that is, m
neurons in the network receive the input from an external
neuron at the same time.

Connections only between excitatory neurons, including
external neurons, are modified by STDP with an asym-
metric window [20]. When the temporal interval between
the ith (presynaptic) neuron and jth (postsynaptic) neu-
ron, ∆t ≡ t j − ti, is positive, a synaptic strength wi j in-
creases by A+e−|∆t|/τ but decreases by A−e−|∆t|/τ for the other
cases, where A+(= 0.1) and A−(= 1.05A+) are the maxi-
mum synaptic modifications of long-term potentiation and
depression, and τ(= 20 ms) is the time constant. Plas-
tic synaptic strengths are constrained with hard bounds of
wi j ∈ [0, 20] for connections from external neurons, and of
wi j ∈ [0, 7] for the other plastic connections. Inhibitory
synaptic strengths in the network are set to −0.05. Ex-
citatory connections from excitatory neurons to inhibitory
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Figure 2: Examples of neuronal avalanches. The upper
panel is long-term avalanche data from 500 s to 1, 000 s.
The two lower panels are enlargements of parts of the up-
per panel and show avalanches i and j. The vertical lines
indicate bin width B ms and the gray areas represent neu-
ronal avalanches. The size of a neuronal avalanche is de-
fined as the number of firing neurons in a gray area. The
lifetime is a period from the first spike to the last spike in
a gray area. The white areas represent the period in which
neurons in the network do not fire.

neurons are set to 4 and fixed during the learning, whereas
ones between excitatory neurons are initially set to 0.01
and change obeying to the learning rule. Synaptic strengths
from external neurons are set to 20 in the initial condition.

After long time enough to converge the distribution of
plastic synapses, external neurons are removed and noisy
input at faft Hz is applied to all neurons in the network.
The present model does not have any mechanisms for the
induction of synchronous activity in the network, then, as a
trigger of a neuronal avalanche, a strong pulse input, whose
strength is 20, is injected to k(= 3) excitatory neurons in
the network at every 200 ms. For 5, 000 s, this procedure is
continued.

Probability distributions of size (the number of neurons)
and lifetime (the duration) of avalanches are generated
from spike data after removing external neurons. The way
to identify neuronal avalanches is same as in Ref. [1] (See
also Fig. 2).

3. Results

Even though the impulse input is injected to the same
number of neurons (3 neurons) at every 200 ms, diverse
sizes and lifetimes of avalanches appear (Fig. 2). This re-
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Figure 3: Size and life-
time distributions of neuronal
avalanches display the power
laws (a),(b) when f is varied
from 90 Hz to 250 Hz and
faft is fixed to 250 Hz. (c),(d)
Same as (a),(b), but f is fixed
to 170 Hz and faft is varied
from 70 Hz to 250 Hz. In
the size and lifetime distribu-
tions, the gray dashed lines are
guidelines of the power law
exponents −1.5 and −2. The
bin width B is set to 1 ms.
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Figure 4.4: Size (left) and lifetime (right) distributions of neuronal avalanches ap-
peared in the network. All panels were plotted in a log-log scale. Solid lines represent
slopes of the distributions fitted in the range of [101, 104] for the size distributions and
[10, 50] [msec] for the lifetime distributions. The frequencies of background inputs ap-
plied to the network were (a) 100, (b) 150, (c) 160 and (d) 170 [Hz]. These results were
obtained from data for 50,000 [sec].
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Figure 4.4: Size (left) and lifetime (right) distributions of neuronal avalanches ap-
peared in the network. All panels were plotted in a log-log scale. Solid lines represent
slopes of the distributions fitted in the range of [101, 104] for the size distributions and
[10, 50] [msec] for the lifetime distributions. The frequencies of background inputs ap-
plied to the network were (a) 100, (b) 150, (c) 160 and (d) 170 [Hz]. These results were
obtained from data for 50,000 [sec].
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sult indicates that some specific subnetworks are sponta-
neously architected by STDP and spatiotemporal patterned
input.

The size and lifetime distributions observed from our
model display the power laws and their exponents are −1.5
and −2, respectively (Fig. 3(a),(b)). This nature is robust
for the firing rate f of noisy input during the learning be-
cause the construction of subnetworks is mainly due to the
spatiotemporally patterned input from external neurons.

In contrast to the parameter f , the firing rate faft of noisy
input affects on both size and lifetime distributions (Fig.
3(c),(d)). The lower faft is, the smaller exponents of the
power law distributions are. This fact indicates that large
and long-lasting avalanches are harder to occur as faft is
lower. In cases of high faft, the input leads to high sub-
threshold membrane potential of neurons and they keep the
condition where they easily emit spikes. In cases of low
faft, however, the membrane potential of neurons is far from
firing threshold, therefore, it is hard that the long-lasting
or large size of avalanches arise in the network. The high
rate weak input supports the generation of large and long-
lasting neuronal avalanches by raising the membrane po-
tential of neurons. Nevertheless, the power law distribu-
tions are preserved in any case. From this fact, it is sug-
gested that the organized network structure, that is guessed

to be feedforward architecture, plays a crucial role to in-
duce the power law distributions in avalanche size and life-
time.

Compared with our previous model, the scaling prop-
erty in both size and lifetime distributions is improved (Fig.
3(a),(b) and Refs. [17, 18]). In particular, when sizes and
lifetimes are small, the undulation disappears and both size
and lifetime distributions form more straight.

4. Discussions

In this paper, we showed that STDP is one of the pos-
sibilities to construct networks that can induce neuronal
avalanches. In our results, the distributions of the size and
lifetime well fit to the power laws, and their exponents are
−1.5 and −2, as observed in Ref. [1]. The point in this study
is spatiotemporal patterned input and sharing common in-
puts. The assumption of such an input is appropriate be-
cause, in fact, spatially patterned firings were observed in
many areas of the brain [21, 22], which could be inputs for
the other neurons, and besides, it is well known that some
neurons share presynaptic inputs [23, 24].

Although, in previous theoretical studies, the 4-ms-bin
width was used to identify neuronal avalanches [8, 17, 18]
according to main results in Ref. [1], we took the 1-ms one.
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Our choice was seemingly more appropriate than that of
the other works because the definition of the avalanche size
in the theoretical studies, including our study, is the num-
ber of firing neurons in an avalanche. In the main results
in Ref. [1], avalanches were identified using the 4-ms-bin
width but the size was defined by the number of electrodes.
Under this definition, there was no longer the amplitude
information of local field potentials (LFPs). The number
of firing neurons is proportional to the amplitude of LFPs
rather than the number of electrodes. In fact, the 1-ms-bin
width was adopted when the size of an avalanche was de-
fined as the amplitude of LFPs in Ref. [1] as well. In this
sense, the 1-ms-bin width might be a better choice.

Although we showed that the proposed model was
able to reproduce the neuronal avalanche statistics, neu-
ronal avalanches have another property that is the repro-
ducibility [5]. In our previous model, the reproducibil-
ity was evaluated using the cross-correlation between pairs
of avalanches as the similarity of spatiotemporal patterns
[18]. Actually, we observed the reproducibility of neuronal
avalanches at the spike level, however, there was no diver-
sity as observed in Ref. [5]. The model proposed in this
study should be evaluated and this is our future work.

In addition, we should also investigate the organization
mechanisms of neuronal avalanches via STDP with spa-
tiotemporal input. These things might be important to un-
derstand the neural information processing in the brain.
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