Summary

Proceedings of the 2013 International Symposium on Nonlinear Theory and its Applications

2013

Session Number:B3L-D

Session:

Number:330

Intrinsic Localized Mode in an Electric Lattice Containing MOS-Capacitors

W. Shi,  S. Shige,  H. Hasebe,  M. Sato,  A. J. Sievers,  

pp.330-333

Publication Date:

Online ISSN:2188-5079

DOI:10.15248/proc.2.330

PDF download (532.6KB)

Summary:
We have succeeded in generating intrinsic localized modes (ILMs) in an electric lattice, containing nonlinear MOS-capacitors. The MOS capacitor has a larger capacitance at a larger voltage, so that the resonance frequency of the capacitor-inductor combination decreases with increasing amplitude. The ILM is phase locked to an AC driver in the auto-resonant state. Because of the soft nonlinearity of the MOS capacitor the ILM frequency is below the bottom of the dispersion curve of the linear spectrum.

References:

[1] S. Flach and A. V. Gorbach, Phys. Rep. 467, 1 (2008).

[2] E. Trías, J. J. Mazo, and T. P. Orland, Phys. Rev. Lett. 84, 741 (2000).

[3] P. Binder, D. Abraimov, A. V. Ustinov, S. Flach, and Y. Zolotaryuk, Phys. Rev. Lett. 84, 745 (2000).

[4] M. Sato and A. J. Sievers, Nature 432, 486 (2004).

[5] H. S. Eisenberg, Y. Silberberg, R. Morandotti, A. R. Boyd, and J. S. Aitchison, Phys. Rev. Lett. 81, 3383 (1998).

[6] M. Sato, B. E. Hubbard, A. J. Sievers, B. Ilic, and H. G. Craighead, Europhys. Lett. 66, 318 (2004).

[7] M. E. Manley, M. Yethiraj, H. Sinn, H. M. Volz, A. Alatas, J. C. Lashley, W. L. Hults, G. H. Lander, and J. L. Smith, Phys. Rev. Lett. 96, 125501 (2006).

[8] M. E. Manley, A. Alatas, F. Trouw, B. M. Leu, J. W. Lynn, Y. Chen, and W. L. Hults, Phys. Rev. B 77, 214305 (2008).

[9] M. E. Manley, A. J. Sievers, J. W. Lynn, S. A. Kiselev, N. I. Agladze, Y. Chen, A. Llobet, and A. Alatas, Phys. Rev. B 79, 134304 (2009).

[10] M. Sato, B. E. Hubbard, L. Q. English, A. J. Sievers, B. Ilic, D. A. Czaplewski, and H. G. Craighead, Chaos 13, 702 (2003).

[11] M. Sato, S. Imai, N. Fujita, S. Nishimura, Y. Takao, Y. Sada, B. E. Hubbard, B. Ilic, and A. J. Sievers, Phys. Rev. Lett. 107, 234101 (2011).

[12] J. Fajans and L. Frièdland, Am. J. Phys. 69, 1096 (2001).

[13] Y. Gopher, L. Friedland, and A. G. Shagalov, Phys. Rev. E 72, 036604 (2005).

[14] A. Barak, Y. Lamhot, L. Friedland, and M. Segev, Phys. Rev. Lett. 103, 123901 (2009).

[15] T. Kuusela, Chaos, Solitons & Fractals 5, 2419 (1995).

[16] B. Z. Essimbi and D. Jäger, J. Phys. D 39, 390 (2006).

[17] J. T. Pan, W. Z. Chen, F. Tao, and W. Xu, Phys. Rev. E 83, 016601 (2011).

[18] R. Stearrett and L. Q. English, J. Phys. D 40, 5394 (2007).

[19] L. Q. English, F. Palmero, A. J. Sievers, P. G. Kevrekidis, and D. H. Barnak, Phys. Rev. E 81, 046605 (2010).

[20] L. Q. English, F. Palmero, P. Candiani, J. Cuevas, R. Carretero-González, P. G. Kevrekidis, and A. J. Sievers Phys. Rev. Lett. 108, 084101 (2012).

[21] R. Van Buskirk and C. Jeffries, Phys. Rev. A 31, 3332 (1985).

[22] M. Sato, S. Yasui, M. Kimura, T. Hikihara, and A. J. Sievers, Europhys. Lett. 80, 30002 (2007).

[23] D. K. Schroder, Semiconductor material and device characterization, 2nd ed. (John Wiley & Sons, New York, 1998), Chapt. 6.

[24] M. Sato, S. Imai, N. Fujita. W. Shi, Y. Takao, Y. Sada, B. E. Hubbard, B. Ilic, and A. J. Sievers, Phys. Rev. E 87, 012920 (2013).