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Abstract– We have succeeded in generating intrinsic 
localized modes (ILMs) in an electric lattice, containing 
nonlinear MOS-capacitors. The MOS capacitor has a 
larger capacitance at a larger voltage, so that the resonance 
frequency of the capacitor-inductor combination decreases 
with increasing amplitude.  The ILM is phase locked to an 
AC driver in the auto-resonant state. Because of the soft 
nonlinearity of the MOS capacitor the ILM frequency is 
below the bottom of the dispersion curve of the linear 
spectrum. 

 
1. Introduction 

 
Intrinsic localized modes (ILMs) or discrete breathers 

have been reported in diverse nonlinear lattice systems. 
[1] The experimental demonstration of ILMs have been 
achieved for a variety of systems, including Josephson 
junction arrays [2,3], antiferromagnetic lattices [4], optical 
guided waves [5], micromechanical arrays [6], and three-
dimensional crystals [7-9]. In a driven 1-D 
micromechanical array, a stationary ILM whose frequency 
is locked to the driver is a steady state feature [10] since 
the ILM amplitude is controlled by the driver frequency. 
This autoresonant (AR) state [11-14] is terminated at two 
bifurcation transitions. The bifurcation dynamics of such 
an AR ILM state has been analyzed in detail by using 
linear response spectroscopy. [11] 

Another important way to study ILMs is with a 
nonlinear transmission line (NLTL). Researchers have 
been investigating such ILMs by using a diode as the 
nonlinear electrical element in the NLTL. The capacitance 
of the diode, which varies with applied voltage, can be 
separated into junction capacitance and diffusion 
capacitance. The junction capacitance dominates for 
reverse-biased diodes, which has been used for some 
research on both solitons [15-17] and ILMs [18-20], while 
diffusion capacitance dominates the forward-biased diode 
[21] producing a soft nonlinearity for the study of ILMs. 
[22]  

In this paper we have investigated the possibility of 
using a MOS-capacitor as a nonlinear element. We have 
also made linear response measurement in such an 
electronic lattice. With the applied DC voltage sweeping 
slowly from a minus value to a suitable plus voltage, the 
state of the MOS-capacitor changes as follows: 
accumulation, depletion, and inversion. From depletion to 

inversion, the capacitance increases suddenly and almost 
immediately achieves a saturation state.[23] This variation 
provides sufficient nonlinearity for the production of 
ILMs.  

With these experiments we show that a stationary ILM 
can be generated and maintained by the driver in the 
steady state. We also identify the bifurcation dynamics by 
measuring the linear response spectrum. We show that the 
behavior of the natural frequency (NF)[24] of the ILM 
plays an important role at both bifurcation points. 
Particularly interesting is the lowest frequency transition 
point, which occurs when the NF intersects the ILM driver 
frequency.  

  
2. Experiments 
 

Figure 1(a) shows capacitance as a function of the 
applied DC voltage of the MOS capacitor C1. To make the 
capacitance symmetric, C1 is formed from two anti-
paralleled MOS-FETs as shown in the inset. The result is a 
larger capacitance at both sides of DC bias voltage and a 
small capacitance at the middle of the curve. The sudden 
change of the capacitance produces the large nonlinearity 
for ILM generation. The nonlinearity of C1 can be 
approximated by the form of 

 
)]/(exp[)( 2101 kVkkVC −+=              (1) 

 

where 0k =1.636nF, 1k =-0.298nF and 2k =2.53V. The 

calculated results from Eq. (1) are shown by the dashed 
curve in Fig. 1(a). 

Our nonlinear electrical lattice is composed of 16 
sections, each of which consists of a nonlinear resonator 
made by the nonlinear capacitor C1, a coil (L1=313µH) 
and a linear coupling element formed by a capacitor 
(C2=421pF) and inductor (L2=626µH), as shown in the 
inset in Fig. 1(b). The linear dispersion relation for such a 
nonlinear electrical lattice, shown in Fig. 1(b), is 
calculated from Eq. (2), which has the form 
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Fig. 1: (a) DC voltage dependence of the capacitance of C1. The 
solid curve is for the nonlinear capacitor C1 composed of two 
anti-parallel connected FETs as shown in the inset. The dashed 
curve is obtained using Eq. (1). (b) Linear dispersion relation 
curve for this 16 element electrical lattice. A typical cell of the 
circuit is shown in the inset, containing a coupling element, C2 
and L2, and a resonating element, C1 and L1. The two dashed 
lines indicate the frequency range of the ILM.  
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where Cd=34.3pF insures a weak coupling between the 
oscillator F and the circuit. (Neither of these elements is 
shown in the Fig. 1(b) insert.) The cw driver F (7V) 
compensates for damping to maintain the ILM in the large 
amplitude state. Since C1 has a soft nonlinearity, an ILM 
can be generated below the bottom of the band. The ILM 
region is indicated by two dashed lines. 

The experimental procedure is as follows: first, the cw 
driver excites the nonlinear electrical lattice; then, the 
voltage of the MOS-FETs at each site is measured by an 
oscilloscope through a 16 channel analog multiplexer. For 
clarity only the absolute value of the AC voltage 
amplitude at each site is monitored. The localized voltage 
response as a function of frequency in the nonlinear lattice 
is shown in Fig. 2. Panel (a) is obtained by increasing or 
decreasing the driver frequency from an initial frequency 
(232 kHz), where an ILM is generated. The frequency 
region of a stable ILM is from 228.3 kHz to 234.7 kHz. 
Figure 2(b) shows an up scan case from a frequency 

below the stable ILM region. No ILM appears until a 
frequency of 231.6 kHz and then it disappears at 234.7 
kHz. The maximum amplitude at each driver frequency of 
Fig. 2(a) and (b) is summarized in Fig. 2(c). The two 
bifurcation points, identified by the edges in the solid 
curve, define the stable ILM region. 

 
 

 
 

Fig. 2(a): The voltage amplitude at the different lattice points as 
a function of the driver frequency. Darker represents a larger 
voltage. The driver frequency is up-scanned or down scanned 
from an ILM state at 232 kHz as denoted by two arrows. The 
frequency range of the stable AR state is from 228.3 kHz to 
234.7 kHz.  (b) Like (a) but for the case of up scan from a lower 
frequency (225 kHz) outside the stable ILM region. (c) The 
maximum amplitude of the ILM as a function of the driver 
frequency. The solid curve is obtained from (a) and the dashed 
curve is measured from (b). Two bifurcation points occur for 
each curve.  
 
 

An additional weak probe oscillator at frequency fp is 
applied for the linear response measurement. Its amplitude 
is less than 1/1000 of the driver so that it doesn’t destroy 
the ILM state. In order to observe the first linear local 
mode associated with the ILM, the probe perturbation is 
only applied at one lattice site contiguous with the ILM 
and the output signal of the other site next to the ILM is 
measured with a lock-in amplifier. The driver frequency is 
tuned by 0.2 kHz step inside the stable ILM region and the 
probe frequency is scanned slowly over the appropriate 
frequency range at each driver frequency.   

The measured linear response spectra for different 
driver frequencies are displayed in Fig. 3. Since the ILM 
occurs below the linear band, the peak on the lower 
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frequency side of the ILM in each trace is the NF. Several 
peaks observed between the ILM and the linear band are 
linear local modes (LLMs). Here we only focus on the 
LLM closest to the ILM and we call it the 1st LLM. 

 The amplitude curve of the AR-ILM is shown in Fig. 
4(a). The difference frequencies of the NF and 1st LLM 
with respect to the driver are presented in Fig. 4(b). When 
approaching the lower end of the stable region, the NF 
frequency difference decreases. Similar to that found for 
the saddle-node bifurcation in the Duffing oscillator [24], 
the lower transition point occurs when the NF frequency 
difference goes close to zero. 

 
 

 
 
Fig. 3: Experimental imaginary part of the linear response as a 
function of the difference frequency between probe fp and driver 
F. The frequency region of the driver ranges from 234 kHz to 
228.4 kHz with 0.2 kHz steps. “NF” denotes natural frequency 
of the ILM, and “1st LLM” indicates the linear local mode 
(LLM) whose frequency is nearest the driver frequency.  
 
 
3. Conclusions 
 

We have demonstrated that an ILM can be successfully 
generated below the bottom of the linear wave spectrum 
with the MOS-FET combination as a new nonlinear 
element in a nonlinear electrical lattice. Since the MOS-
FET combination gives rise to a large nonlinearity when 
its capacitance increases suddenly and saturates 
immediately as the applied absolute voltage increases, as 
shown in Fig. 1(a). The ILM remains stable inside the AR 
region maintained by a cw driver, which compensates the 
energy lose from damping. At the ends of the AR region 
the ILM disappears at two fundamental bifurcation 
transition points. By means of linear response 
measurements it has been shown that the behavior of the 
NF of the ILM plays a key role at the lower bifurcation 
transition. As shown in Fig. 3 and Fig. 4(b), the NF of the 
ILM approaches that of the driven ILM, as the driver 
frequency decreases. At the low frequency bifurcation 
point the frequency difference between the NF of the ILM 
and the driven ILM goes to zero. This bifurcation 

transition is a saddle-node type and has been studied in 
detail in MEMS experiments [24].  
 
 

 
 
Fig. 4: (a) Amplitude of ILM as a function of the driver 
frequency. (b) NF and 1st LLM frequency difference versus the 
driver frequency. The NF difference goes to zero as the lower 
bifurcation point is approached.  
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