Summary

Proceedings of the 2012 International Symposium on Nonlinear Theory and its Applications

2012

Session Number:A1L-B

Session:

Number:21

Emergence of a primitive cellular structure in a catalytic reaction network

Atsushi Kamimura,  Kunihiko Kaneko,  

pp.21-24

Publication Date:

Online ISSN:2188-5079

DOI:10.15248/proc.1.21

PDF download (1.5MB)

Summary:
It is essential to explain the emergence of primitive cellular structure from a set of chemical reactions to unveil the origin of life and to experimentally synthesize protocells. Recently, we considered a hypercycle with two mutually-catalyzing chemicals to demonstrate that the reproduction of a protocell with a growth-division process occurs when the replication and degradation speeds of one chemical are slower than those of the other chemical respectively, and molecules are crowded as a result of replication. In this paper, we discuss the effects of the crowding molecule on the formation of primitive structure by simulating a cellular automaton model, and also apply the model to a hypercycle with three molecular species.

References:

[1] Protocells Bridging Nonliving and Living Matter, edited by S. Rasmussen et. al. (MIT Press, Cambridge, MA, 2009).

[2] F. Dyson, Origins of Life (Cambridge University Press, Cambridge, England, 1985).

[3] S. A. Kauffman, J. Theor. Biol. 119, 1 (1986).

[4] S. Krishna and S. Jain, Proc. Natl. Acad. Sci. U. S. A. 99, 2055 (2002).

[5] D. Segre, D. Ben-Eli, and D. Lancet, Proc. Natl. Acad. Sci. U. S. A. 97, 4112 (2000).

[6] C. Furusawa and K. Kaneko, Phys. Rev. Lett. 90, 088102 (2003).

[7] M. Eigen and P. Schuster, The Hypercycle (Springer, New York, 1979).

[8] M. Eigen, Steps Towards Life (Oxford University Press, Oxford, 1992).

[9] J. Maynard-Smith, Nature, 280, 445 (1979).

[10] E. Szathmary and L. Demeter, J. Theor. Biol. 128, 463 (1987).

[11] S. Altmeyer and J. S. McCaskill, Phys. Rev. Lett. 86, 5819 (2001).

[12] M. Boerlijst and P. Hogeweg, Physica 48D, 17 (1991).

[13] V. Noireaux, Y. T. Maeda, and A. Libchaber, Proc. Natl. Acad. Sci. U.S.A. 108, 3473 (2011).

[14] N. M. Shnerb, Y. Louzoun, E. Bettelheim, and S. Solomon, Proc. Natl. Acad. Sci. U. S. A. 97, 10322 (2000).

[15] N. M. Shnerb, E. Bettelheim, Y. Louzoun, O. Agam, and S. Solomon, Phys. Rev. E, 63, 021103 (2001).

[16] Y. Togashi and K. Kaneko, Phys. Rev. Lett. 86, 2459 (2001).

[17] Y. Togashi and K. Kaneko, Physica 205D, 87 (2005).

[18] R. Phillips, J. Kondev, J. Theriot, Physical Biology of the Cell (Garland Science, New York, 2009), Chap. 14.

[19] K. Kaneko and T. Yomo, J. Theor. Biol. 214, 563 (2002).

[20] A. Kamimura, K. Kaneko, Phys. Rev. Lett. 105, 268103 (2010).