Summary

Proceedings of the 2012 International Symposium on Nonlinear Theory and its Applications

2012

Session Number:C2L-B

Session:

Number:636

Inhibitory Feedback Loop Induces Anticipated Synchronization in Neuronal Networks

Fernanda S. Matias,  Pedro V. Carelli,  Claudio R. Mirasso,  Mauro Copelli,  

pp.636-639

Publication Date:

Online ISSN:2188-5079

DOI:10.15248/proc.1.636

PDF download (976.5KB)

Summary:
Anticipated synchronization (AS) was shown to occur in systems of two coupled neurons in a master-slave configuration, if the slave is subject to a delayed self-feedback. We show that AS can also occur in a canonical neuronal microcircuit with standard chemical synapses, in which the formal delayed negative self-feedback is replaced by an inhibitory feedback loop. This means that the delayed feedback that leads to AS is given by biologically plausible elements (an interneuron and chemical synapses). So the anticipation time is not hard-wired in the dynamical equations, but rather emerges from the circuit dynamics. In this scenario, the inhibitory synaptic conductance has an important role in the transition from delayed synchronization (DS) to AS.

References:

[1] H. U. Voss, Phys. Rev. E, vol.61, pp.5115, 2000; H. U. Voss, Phys. Rev. E, vol.64, pp.039904, 2001; H. U. Voss, Phys. Rev. Lett, vol.87, pp.014102, 2001

[2] C. Masoller and D.H. Zanette, Physica A, vol.300, pp.359-366, 2001

[3] S. Sivaprakasam,E.M. Shahverdiev, P.S. Spencer and K.A. Shore, Phys. Rev. Lett., vol.87, pp.154101, 2001; Y. Liu, Y. Takiguchi, P. Davis, T. Aida, S. Saito, and J.M. Liu, Appl. Phys. Lett., vol.80, pp.4306, 2002.

[4] M. Ciszak, C.R. Mirasso, R. Toral and O. Calvo, Phys. Rev. E, vol.79, pp.046203, 2009.

[5] M. Ciszak, O. Calvo, C. Masoller, C.R. Mirasso and R. Toral, Phys. Rev. Lett., vol.90, pp.204102, 2003; M. Ciszak, F. Marino,R. Toral and S. Balle, Phys. Rev. Lett., vol.93, pp.114102, 2004; R. Toral, C. Masoller, C.R. Mirasso, M. Ciszak and O. Calvo, Physica A, vol.325, pp.192, 2003.

[6] Essentials of Neural Science and Behavior, edited by E.R. Kandel and T.M. Jessel (Appleton Lange, Norwalk, 1995).

[7] A. Arvanitaki, J. Neurophysiol, vol.5, pp.89-108, 1942.

[8] Matias, F. S. and Carelli, P. V. and Mirasso, C. R. and Copelli, M. Phys. Rev. E, vol.84, pp.021922, 2011.

[9] The Synaptic Organization of the Brain, edited by G.M. Shepherd (Oxford University Press, New York, 1998).

[10] U. Kim, M.V. Sanchez-Vives and D.A. McCormick, Science, vol.278, pp.130-134, 1997; D. Debay, J. Wolfart, Y. Le Franc, G. Le Masson and T. Bal, J. Physiol., pp.540-558, 2004.

[11] A.L. Hodgkin and A.F. Huxley, J. Physiol., vol.117, pp.500-544, 1952.

[12] C. Koch, Biophysics of Computation (Oxford University Press, New York, 1999).

[13] Methods in Neuronal Modeling: From Ions to Networks, 2nd ed., edited by C. Koch and I. Segev (MIT Press, Cambridge, MA, 1998).

[14] J. Rinzel and R.N. Miller, Math. Biosci., vol.49, pp.27-59, 1980.

[15] J.R.P. Geiger, J. Lü bke, A. Roth, M. Frotscher and P. Jonas, Neuron, vol.18, pp.1009-1023, 1997; M. Bartos, I. Vida, M. Frotscher, A. Meyer, H. Monyer, J.R.P. Geiger and P. Jonas, Proc. Natl. Acad. Sci., vol.99, pp.13222-13227, 2002; M. Hausser, and A. Roth, Proc. Natl. Acad. Sci., vol.99, pp.13222-13227, 2002; U. Kraushaar and P. Jonas, J. Neurosci., vol.20, pp.5594-5607, 2000;

[16] S. H. Strogatz Nonlinear Dynamics and Chaos: with Applications to Physics, Biology, Chemistry and Engineering (Addison-Wesley, Reading,MA, 1997).

[17] R. Vicente and L.L. Gollo and C.R. Mirasso and I. Fischer and G. Pipa PNAS, vol.105, pp.17157-17162, 2008.

[18] G.B. Ermentrout, Neural Comput., vol.8, pp.979-1001, 1996.