Summary

Proceedings of the 2012 International Symposium on Nonlinear Theory and its Applications

2012

Session Number:B2L-B

Session:

Number:369

Heterogeneity effects on the synchronization and entrainment of coupled circadian oscillators

Emilio Hernández-García,  Niko Komin,  Adrian C. Murza,  Raúl Toral,  

pp.369-372

Publication Date:

Online ISSN:2188-5079

DOI:10.15248/proc.1.369

PDF download (344.8KB)

Summary:
Circadian rhythms in mammals are controlled by neurons in the suprachiasmatic nucleus of the hypothalamus, which are very efficiently entrained by the 24-hour light-dark cycle. Motivated by recent findings on the relevance of neuronal heterogeneity, we model neurons in the suprachiasmatic nucleus as chemically-coupled oscillators with non-negligible heterogeneity in their periods. The system response to the light-dark cycle is studied as a function of the coupling strength, forcing amplitude and neuronal heterogeneity. Our results indicate that neurons respond more coherently to external forcing when the right amount of heterogeneity is present.

References:

[1] S. Reppert, D. Weaver. “Coordination of circadian timing in mammals.” Nature, vol. 418, pp. 935-941, 2002.

[2] R. Moore, J. Speh, R. Leak. “Suprachiasmatic nucleus organization.” Cell and Tissue Research, vol. 309, pp. 89-98, 2002.

[3] S. Honma, W. Nakamura, T. Shirakawa, K. Honma. “Diversity in the circadian periods of single neurons of the rat suprachiasmatic nucleus depends on nuclear structure and intrinsic period.” Neuroscience Letters, vol. 358, pp. 173-176, 2004.

[4] D. Welsh, D. Logothetis, M. Meister, R. S.M. “Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms.” Neuron, vol. 14, pp. 697-706, 1995.

[5] S. J. Aton, C. S. Colwell, A. J. Harmar, J. Waschek, E. D. Herzog. “Vasoactive intestinal polypeptide mediates circadian rhythmicity and synchrony in mammalian clock neurons.” Nature Neuroscience, vol. 8, pp. 476-483, 2005.

[6] D. Gonze, S. Bernard, C. Waltermann, A. Kramer, H. Herzel. “Spontaneous Synchronization of Coupled Circadian Oscillators.” Biophys. J., vol. 89, pp. 120-129, 2005.

[7] S. Bernard, D. Gonze, B. Cajavec, H. Herzel, A. Kramer. “Synchronization-induced rhythmicity of circadian oscillators in the suprachiasmatic nucleus.” PLoS Comput. Biol., vol. 3, p. e68, 2007.

[8] N. Komin, A. C. Murza, E. Hernández-García, R. Toral. “Synchronization and entrainment of coupled circadian oscillators.” Interface Focus, vol. 1, pp. 167-176, 2011.

[9] B. C. Goodwin. “Oscillatory behavior in enzymatic control processes.” Adv. Enzyme Regul., vol. 3, pp. 425-438, 1965.

[10] L. Gammaitoni, P. Hänggi, P. Jung, F. Marchesoni. “Stochastic resonance.” Rev. Mod. Phys., vol. 70, pp. 223-287, 1998.

[11] G. Ermentrout. “Oscillator death in populations of 'all to all' coupled nonlinear oscillators.” Physica D, vol. 41, pp. 219-231, 1990.

[12] L. Gammaitoni, P. Hänggi, P. Jung, F. Marchesoni. “Stochastic resonance: A remarkable idea that changed our perception of noise.” Eur. Phys. J. B, vol. 69, pp. 1-3, 2009.

[13] C. J. Tessone, C. R. Mirasso, R. Toral, J. D. Gunton. “Diversity-induced resonance.” Phys. Rev. Lett., vol. 97, 194101, 2006.

[14] A. Pikovsky, J. Kurths. “Coherence resonance in a noisedriven excitable system.” Phys. Rev. Lett., vol. 78, pp. 775-778, 1997.

[15] E. Ullner, J. Buceta, A. Diez-Noguera, J. García-Ojalvo. “Noise-induced coherence in multicellular circadian clocks.” Biophys. J., vol. 96, p. 3573, 2009.