Summary

Proceedings of the 2012 International Symposium on Nonlinear Theory and its Applications

2012

Session Number:B1L-B

Session:

Number:308

Mechanism-Based Models of Neurons and Synapses for Multi-Level Simulations of Brain Functions

Hans A. Braun,  Svetlana Postnova,  

pp.308-311

Publication Date:

Online ISSN:2188-5079

DOI:10.15248/proc.1.308

PDF download (2.1MB)

Summary:
The conductance-based simulation approach is highlighted as a most valuable method for the examination of neuronal functions by means of mathematical models in close relation to the physiological and pathophysiological mechanisms. This approach, mostly used for single neuron simulations, can be extended to consider subcellular mechanisms as well as higher level activities at the level of neuronal networks, interactions between different brain nuclei, and relations to behavioral functions. Strategies of physiologically justified simplifications and adjustments to specific tasks with regard to experimentally and clinically relevant measures are illustrated, and novel technologies to overcome the inherent limitations of time consuming calculations are presented.

References:

[1] D. Noble, “Biophysics and systems biology,” Philos. Transact. A, Math. Phys. Eng. Sci., vol.368, pp 1 125-1139, 2010

[2] S. Postnova, Finke C, Huber MT, Voigt K, Braun HA, “Conductance-Based Models of Neurons and Synapses for the Evaluation of Brain Functions, Disorders and Drug Effects,” in: Biosimulation in Biomedical Research, Health Care and Drug Development. Eds.: Erik Moseki lde, Olga Sosnovtseva, Amin Rostami-Hodjegan. Springer, Wien - New York, pp 93-126, 2011.

[3] A. L. Hodgkin and A. F. Huxley, “A quantitative description of membrane current and its application to conduction and excitation in nerve,” J. Physiol, vol.17, pp 500-544, 1952

[4] S. Postnova, K. Voigt, H. A. Braun “A mathematical model of homeostatic regu lation of sleep-wake cycles by hypocretin/orexin,” J. Biol. Rhythms, vol. 24, pp 523-535, 2009.

[5] C. Finke, S. Postnova, E. Rosa, J. A. Freund, M. T. Huber, K. Voigt, F. Moss, H. A.Braun, U. Feudel, “Noisy activation kinetics induces bursting in the Huber-Braun neuron model,” Europ Phys. J. Special Topics, vol.187, pp 199-203, 2010.

[6] H. A. Braun, J. Schwabedal, M. Dewald, C. Finke, S. Postnova, M. T. Huber, B. Wollweber, H. Schneider, M. C. Hirsch, K. Voigt, U. Feudel, F. Moss, “Noise Induced Precursors of Tonic-to-Bursting Transitions in Hypothalamic Neurons and in a Conductance-Based Model,” Chaos, vol.21(4), 047509 1-12, 2011.

[7] J. J. Hopfield, “Neural networks and physical systems with emergent collective computational abilities”, Proc. Natl. Acad Sci., vol.79, pp 2554-2558, 1982.

[8] Y. Gu, G. Haines, H. Liljenström, H. Liang, D. von Rosen, B. Wahlund, “Modelling ECT Effects by Connectivity Changes in Cortical Neural Networks,” Neurocomputing, vol. 69, ppl341-134, 2006.

[9] A. J. K.Phillips and P. A. Robinson, “A quantitative model of sleep-wake dynamics based on the physiology of the brainstem ascending arousal system,” J. Biol. Rhythms, vol. 22, pp 167-179, 2007.

[10] C. J. Tessone, C. R. Mirasso, R. Toral, J. D. Gunton, “Diversity-induced resonance, ” Phys. Rev. Lett., vol.97, pp 194101, 2006.

[11] S. Postnova, E. Rosa, H. A. Braun, “Neurones and Synapses for Systemic Models of Psychiatric Disorders,” Pharmacopsychiatry, vol. 43, pp S82-S9 I, 2010.

[12] M. Patriarca, S. Postnova, H. A. Braun, E. Hernandez-Garcia, R. Toral, “Diversity and noise effects in a model of homeostatic regulation of the sleep-wake cycle,” in revision.

[13] H. A. Braun, K. Schäfer, K. Voigt, M. T. Huber “Temperature encoding in peripheral cold receptors: Oscillations, resonances, chaos and noise,” in: Nova Acta Leopoldina NF 88 (Nr. 332): Non linear Dynamics and the Spatiotemporal Principles in Biology, pp 293-318, 2003.

[14] S. Postnova, K. Voigt, H. A. Braun, “Neural Synchronization at Tonic-to-Bursting Transitions,” J. Biol. Physics, vol. 33, pp 129-143, 2007.

[15] S. Postnova, C. Finke, W. Jin, H. Schneider, H. A. Braun, “A computational study of the interdependencies between neuronal impulse pattern, noise effects and synchronization,” J. Physiol. Paris, vol. 104, pp 176-189, 2010.

[16] E. M. Izhikevich, “Simple model of spiking neurons”, IEEE Trans. Neural Netw., vol.14, pp 1569-1572, 2003.

[17] M. Beuter, A. Tschaptchet, W. Bonath, S. Postnova, H.A. Braun, “Real-Time Simulations of Conductance-Based Neuronal Network Synchronization with a Digital FPGA Hardware-Core”, in revision.

[18] R. Hermida, M. Patrone, M. Pijuan, P. Monzon, J. Orregion i “An analogue circuit implementation of the Huber-Braun Cold Receptor Neuron Model,” in revision.