Asia-Pacific Network Operations and Management Symposium


Session Number:P2



Long-Term Span Traffic Prediction Model Based on STL Decomposition and LSTM

Yonghua Huo,  Yu Yan,  Dan Du,  Zhihao Wang,  Yixin Zhang,  Yang Yang,  


Publication Date:2019/9/18

Online ISSN:2188-5079


PDF download (900.3KB)

With the increasing complexity of the network, the current network traffic has strong nonlinearity and burstiness. Therefore, the traditional traffic prediction model is no longer applicable. The neural network model, especially the LSTM, can well fit the nonlinearity of time-series data and preserve the information memory of the past. However, as for the periodicity of long-term span network traffic data, the neural network model does not perform well. Based on this, this paper proposes LTS-TP (Long-Term Span Traffic Prediction model), a network traffic prediction model, to solve the problem. First, the model decomposes the collected network traffic data using the improved STL decomposition algorithm to preserve the seasonal component. Then, the trend component and the remainder component are input into the Seq2Seq model based on the LSTM added with the improved attention mechanism for prediction. Finally, the predicted value of the output is added to the seasonal component, and the final network traffic prediction value is obtained. In the simulation part, this paper uses the MAWI public data set to test the proposed network traffic prediction model and compared performance with other models. The results show that the network traffic prediction model proposed in this paper has a good predictive effect on long-term span network traffic data.