Hierarchical Transmission Algorithm combined coding method in the T-DMB system

Jongtae Bae1, Minhyuk Kim2, Suksoon Choi3, Taedoo Park4, Namsoo Kim5, and Jiwon Jung6
Department of Radio Communication Engineering, Korea Maritime University
#1, Dongsam-dong, Youngdo-gu, Busan, Korea
E-mail: 1ms43bjt@hhu.ac.kr, 2squru@hotmail.com, 3next_jeonpa@hhu.ac.kr,
4bokddori@hhu.ac.kr, 5skatn1983@hhu.ac.kr, 6jwjung@hhu.ac.kr

Abstract: T-DMB (Terrestrial Digital Multimedia Broadcasting) system, is based on the Eureka-147 standard, provides various multimedia data services. However T-DMB needs more various services and higher throughput while maintaining reception. Therefore, this paper proposes advanced T-DMB system using the unequal error protection system, hierarchical multi level modulation and various coding scheme which is used for recent wireless communication, while maintaining backward compatibility. As the simulation results, proposed advanced T-DMB system has coding gain of 2~6dB compared to conventional T-DMB.

1. Introduction

The DMB system has a 2.3-Mbps data-delivery capability, which is sufficient for multimedia broadcasting services as well as CD-quality digital audio services. However, the data payload reduces to 1.5Mbps when we take into account the overhead such as the bits needed for synchronization, error correction and multiplex configuration information. Therefore, for multimedia broadcasting services at a low data-delivery transfer rate[1][2]. However, many users want more various services. And new technology may have been developed to allow higher throughput and to guarantee more reliable reception. Thus it is necessary to upgrade T-DMB system[3]. Thus, in this paper, a hierarchical modulation scheme and unequal error protection are applied to the conventional T-DMB system for the backward compatibility.

2. Unequal Error Protection(UEP) system and Hierarchical modulation

Some parts of information are more important than that in the other parts. Therefore, stronger protection should be applied to these parts than to the other parts. This is unequal error protection(UEP). Fig. 1 shows general UEP system block diagram[4].

Fig. 2 shows proposed coding scheme using UEP method for advanced T-DMB in this paper. HP(High Priority) can be used for conventional T-DMB system, and LP(Low Priority) is used for additional service.

In hierarchical modulation, two separate data streams are modulated onto a single stream[5]. The data streams of hierarchical modulation vary in their susceptibility to noise. In other words, the service coverage areas differ in size. Receivers with "good" reception conditions can receive both streams, while those with “poorer” reception conditions may only receive the HP stream[6].

Fig. 3 and fig. 4 show proposed unequal 16QAM and 64QAM hierarchical modulation constellation for advanced T-DMB.

Figure 1. General UEP system block diagram.

Figure 2. Proposed advanced T-DMB UEP system model.

Figure 3. Proposed unequal 16QAM hierarchical modulation constellation.
Figure 4. Proposed unequal 64QAM hierarchical modulation constellation.

Let α is the ratio between symbols of unequal 16QAM and 64QAM, α is shown in equation (1).

\[\frac{p}{q} = \alpha \]

(1)

3. Bit split method

Multilevel modulation has become an essential field of research in digital communications. However, all those advantage of iterative codes should be accompanied with accurate estimation of soft demapping of the received signal. This would be more important in the decision input from a received signal includes many complex computing operations[7].

Recently, there are various methods as LLR method, MAX method, and Euclidian distance method. In this paper, we propose bit split method for advanced T-DMB system. For example, in 16QAM modulation of fig. 3, received signal, \(r(t) \) is calculated from equation (2), where c(t) and n(t) denote the transmitted signal and the noise signal.

\[r(t) = c(t) + n(t) \]

(2)

Let \(r_i(t) \) is inphase value of \(r(t) \) and \(r_q(t) \) is quadrature value of \(r(t) \). And then, each decoder input signal value is calculated from equation (3) ~ (6).

\[r_{c_i}(t) = r_i(t) \]

(3)

\[r_{c_q}(t) = r_q(t) \]

(4)

\[r_{i}(t) = |r_i(t)| - (p + q) \]

(5)

\[r_{q}(t) = |r_q(t)| - (p + q) \]

(6)

Fig. 5 shows process of bit separation using receive signal in the AWGN channel in case of \(\alpha=3 \) and \(EsNo=20dB \).

4. Simulation result

We simulated the performance HP and LP data in AWGN channel. Table 1 shows simulation parameters of used various HP and LP coding methods. Punctured convolution code(T-DMB spec.) and binary turbo code are simulated only at 16QAM modulation method.

<table>
<thead>
<tr>
<th>HP</th>
<th>Convolutional code</th>
<th>G(x)</th>
<th>Coding Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convolutional code (T-DMB)</td>
<td>G(x) = (171,133)_h</td>
<td>1/2</td>
<td></td>
</tr>
<tr>
<td>Convolutional code (T-DMB)</td>
<td>G(x) = (133,171,145,133)_h</td>
<td>1/2(punctured)</td>
<td></td>
</tr>
<tr>
<td>Binary Turbo code</td>
<td>State</td>
<td>4 or 8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Block size</td>
<td>1536</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Iteration</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Coding Rate</td>
<td>1/2</td>
<td></td>
</tr>
<tr>
<td>Double Binary Turbo code (DVB-RCS)</td>
<td>Block size = 1536</td>
<td>1/2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Iteration</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Coding Rate</td>
<td>1/2,1/3,1/4</td>
<td></td>
</tr>
<tr>
<td>LDPC code</td>
<td>Block size</td>
<td>16200(K=7200)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Iteration</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Coding Rate</td>
<td>1/2</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 6(a) shows the simulation result in terms of the value of \(\alpha \) in case that (2,1,7) convolution code is used for HP and LP data. At the BER of \(10^{-4} \), the coding gain difference is more than about 9dB between HP and LP BER performance. When the value of \(\alpha \) is larger, the HP performance is the better but LP performance is worse. Fig. 6(b) shows the BER performance when (2,1,7) convolution code is used for HP data and punctured (2,1,7) convolution code is used for LP data. The result of BER performance is almost the same as fig. 6(a).
Figure 6. Comparison of BER performance between HP and LP data in case of 16QAM.

Fig. 7 shows BER performances of LP data using various coding methods in case of 16QAM modulation method. At the BER of 10^{-4}, LDPC code with half rate is better than conventional T-DMB as about 4dB and double binary turbo code with R=1/4 is better than conventional T-DMB as about 6dB.

Figure 7. BER performances of LP data using 16QAM.

Fig. 8 shows BER performance of HP and LP data using 64QAM modulation in case that (2,1,7) convolution code is used for HP and LP data.

Figure 8. Comparison of BER performance between HP and LP data in case of 64QAM.

Fig. 9 shows BER performances of LP data using various coding methods in case of 64 QAM modulation method. Although the BER performance is some different, fig. 9 is similar with fig. 7.
At the BER of 10^{-3}, proposed advanced T-DMB in this paper has coding gain of 2–6dB compared to conventional T-DMB.

References

