The Study of Magnetic Field Intensity and Time Variation Effect on the Rice Growth

P. Sungkhaphun, W. Khan-ngern and S. Nitta*
Faculty of Engineering and Research Center for Communications and Information Technology
King Mongkut Institute of Technology Ladkrabang, Bankok, 10520, Thailand
Phone/Fax: +(662) 737-3000 ext. 3322
E-mail: tumtip@hotmail.com, kkveerac@kmitl.ac.th
*Graduate School, Production System Engineering
Salesian Polytechnic, 2-35-11 Igusa Sunginami, Tokyo, 167-0021, Japan,
E-mail: nitta@cc.tuat.ac.jp

Abstract: This paper presents the result of magnetic field intensity and time variation effect to the rice growth. This research focuses on the growth of rice under magnetic field intensity at 40 A/m and 20 A/m. The comparison is done under the condition of magnetic field for the period 8 hours, 16 hours and 24 hours per day and without magnetic field. Research assessment is supported qualitatively by analysis results of the experimental data based on statistic evaluation. The magnetic field effect can be the growth rate of rice, and the physical changing in height of stems and roots. The environment of the experiment such as temperature, light, and relative humidity is controlled in the same condition.

Key words: magnetic field, magnetic intensity, rice growth, mean

1. Introduction

One of the source of the magnetic field and the electric field is the transmission line. Main areas in Thailand are agriculture land and having the transmission line pass through. It may be affected on plant and the other life [1], [2]. Therefore, the study of bio-effect of rice is introduced.

In this paper, the effect of magnetic field intensity at 40 A/m and 20 A/m is focused. The duty ratio of operating period is set up at 8 hours 16 hours and 24 hours/day for a week. The condition of the experiment is shown in table 1.

Table 1: The conditions of the experiment

<table>
<thead>
<tr>
<th>Group Test</th>
<th>without H</th>
<th>with H (40 A/m)</th>
<th>with H (20 A/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>group 1 (8hrs)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>group 2 (16hrs)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>group 3 (24hrs)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

2. Theory

2.1 Magnetic Field Intensity (A/m)

The magnetic field intensity can be calculated by equations (1) and (2) [3], [4].

\[d\vec{H} = \frac{Id\vec{L} \times a_R}{4\pi R^2} \] \hspace{1cm} (1)

\[d\vec{H} \]: Magnetic field intensity (A/m)

\[d\vec{L} \]: The length of a wire (m)

\[a_R \]: Unit vector of radius

\[R \]: Radius of operation

\[\frac{Id\vec{L} \times a_R}{4\pi R^2} \]

Fig. 1. Construction for finding magnetic field intensity by Bio-Savart law

From Fig. 1, magnetic field intensity can be calculated by equation (2).

\[d\vec{H}_2 = \frac{Id\vec{L} \times a_{R12}}{4\pi R_{12}^2} \] \hspace{1cm} (2)

\[d\vec{H}_2 \]: Magnetic field intensity (A/m)

\[d\vec{L} \]: The length of a wire (m)

\[a_{R12} \]: Unit vector of radius

\[R_{12} \]: Radius of operation

Two key factors associated with magnetic field intensity are amplitude of current and the distance.

2.2 Theory of statistic

This research is supported qualitatively by analysis results of the experimental data based on statistic evaluation.

Those the statistic evaluations are Mean (\(\overline{X} \)) and Standard deviation (S). The statistic equations are shown in equations (3) and (4) [5].
2.2.1 Mean (\(\bar{X} \)):

\[
\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n}
\]

(3)

\(\sum_{i=1}^{n} X_i \) : summation value of the test group

\(n \) : number of the test group

2.2.2 Standard deviation (\(S \))

\[
S = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n}}
\]

(4)

\(x_i - \bar{x} \) : the difference between value of group test with mean of test group

\(n \) : number of the test group test with mean of test group

\(n \) : number of the test group

Two key data for the assessment are the mean and the standard deviation (S.D.) where the low S.D. is preferred.

3 Experimental

3.1 Experimental Procedure

To prepare seed of rice

To dry with sun light 12 hrs.

To soak water 24 hrs.

bring to pack covered with cloth 48 hrs.

To lay seed of rice in box with the extra paper for the germinate

without magnetic field

with magnetic field

To observe result and analysis with statistic approach

Fig. 2. Diagram of the experimental

3.2 Experimental Setup

In this study effect of magnetic field is done under the continuous magnetic filed with the magnetic field source (AC source, frequency 50 Hz) and a diameter of loop current is 1 m. The magnetic field source and loop current were designed by

- AC source 220V 50Hz
- Transformer 220/10-40Vac
- Variac 0-300 Vac
- the copper wire No. 20 (A.W.G) and area is 0.5174 mm², \(I_{ac} \) is 8 A.
- the plastic tube for modify loop current, there is a diameter 1 m.

Suphunburi 1, Thai rice, is used in this experiment. Seed of rice is planted in a square plastic box with the special paper for the germinate, the number of seed is laid 10 rows x 10 columns per the group of the test. The experiment is compared with the rice growth under continuous magnetic field and nonmagnetic filed.

The experiment is done for magnetic filed intensity at 40 A/m and 20 A/m. The duty ratios of period is set up at 8 hours, 16 hours and 24 hours per day respectively for a week. Then, growing rice is observed and recorded the physical changing in height of stems and length of roots at the 7th day.

The experimental setup are shown in Fig. 3-5

Fig. 3. Layout of loop current

Fig. 4. The circuit equivalent of continuous magnetic field
4. Experimental results

In this study, effect of magnetic fields on the rice growth under test of magnetic field intensity 40 A/m and 20 A/m the comparison is done under the condition of magnetic field for the period 8 hours, 16 hours and 24 hours per day for a week then record at the 7th day. The result of experimental analysis bases on statistic evaluation by the mean value and standard deviation. The result is shown in Figs. 6-7 and tables 2-5.

![Fig. 5. The experimental setup](image)

![Fig. 8. The region of stem and root were record](image)

<table>
<thead>
<tr>
<th>Case</th>
<th>With H (A/m)</th>
<th>Without H (A/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 A/m</td>
<td>(a)</td>
<td>(b)</td>
</tr>
<tr>
<td>20 A/m</td>
<td>(c)</td>
<td>(d)</td>
</tr>
</tbody>
</table>

![Fig. 6. Comparison of stems sample at various time applying to week shows on the 7th day](image)

![Fig. 7. Comparison of roots sample at various time applying to week shows on the 7th day](image)

(a) root under magnetic field intensity 40 A/m
(b) root without magnetic field
(c) root under magnetic field intensity 20 A/m
(d) root without magnetic field

![Fig. 8. Comparison of average height stems at various time applying to week shows on the 7th day](image)

![Fig. 9. Comparison of average length roots at various time applying to week shows on the 7th day](image)

![Fig. 10. Comparison of percentage difference average height stems at various time applying to week shows on the 7th day](image)
4D3-1

Fig. 12. Comparison of percentage difference average of length roots at various time applying to week shows on the 7th day.

Percentage difference can be calculated by equation (5)

\[
\% \text{ difference of average} = \left(\frac{\text{data}_{\text{with} \ H} - \text{data}_{\text{without} \ H}}{\text{data}_{\text{without} \ H}} \right) \times 100
\]

Table 2 Standard deviation of stems and roots

<table>
<thead>
<tr>
<th>Group</th>
<th>Standard deviation of stems</th>
<th>Standard deviation of roots</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Without H</td>
<td>With H</td>
</tr>
<tr>
<td></td>
<td>20 A/m</td>
<td>40 A/m</td>
</tr>
<tr>
<td>8 hrs.</td>
<td>130</td>
<td>1.74</td>
</tr>
<tr>
<td>16 hrs.</td>
<td>1.37</td>
<td>1.32</td>
</tr>
<tr>
<td>24 hrs.</td>
<td>1.68</td>
<td>2.83</td>
</tr>
</tbody>
</table>

5. Analysis

The temperature, relative humidity are controlled for all the experiment. The comparison between average of stems and average of roots and with the satisfactory standard deviation.

Figs. 6 and 7 show the magnetic field effect on the sample of growing rice on the 7th day show that longer applied magnetic field intensities period results a longer stems and roots.

Figs. 9 and 10 show the results of the average height of stems and the average length of roots. The longer applied magnetic field intensities period, the higher of the stem is performed. This is the same as the case of the length of the roots.

Figs. 11 and 12 show percentage difference average of height stems and length roots. The higher magnetic field intensities and the longer applied magnetic field intensities period, the higher of the stem is performed. This is the same as the case of the length of the roots.

This is a significant advantage about (28.66-14.94 = 13.72 %), (32.46-17.39 = 15.07 %) and (32.60-21.55 = 11.05 %) between treatment without H and 40 A/m and 20 A/m for 3 difference period as compared height of stems in fig. 11.

This is a significant advantage about 11.87%, 20.55% and 17.56% between treatment without H and 40 A/m and 20 A/m for 3 difference period as compared length of roots in fig. 12.

Table. 2 show standard deviation of stems and roots. The standard deviation of all experiment are satisfied.

6. Conclusion

This paper has proposed the study effect of magnetic field on the rice growth under magnetic field intensity at 40 A/m and 20 A/m. The comparison is done under the condition of magnetic field for the period 8 hours, 16 hours and 24 hours. The applied continuous magnetic field can affect the growth rate of rice.

The results of this research can be guide line for rice treatment to increase the rice development.

References