ɽÆâ¤Î¥»¥Ã¥·¥ç¥ó̾¤Ï¤½¤Î¥»¥Ã¥·¥ç¥ó¾ðÊó¤Ë¥ê¥ó¥¯¤·¤Æ¤¤¤Þ¤¹¡¥
2020ǯ8·î20Æü(ÌÚ) |
¥ë¡¼¥à1 | ¥ë¡¼¥à2 | ¥ë¡¼¥à3 | ¥ë¡¼¥à4 |
---|---|---|---|
9:00 - 9:15 |
|||
9:15 - 10:30 |
9:15 - 10:30 |
||
10:45 - 11:45 |
10:00 - 11:40 |
10:45 - 12:00 |
|
12:00 - 12:15 |
|||
12:15 - 12:40 |
|||
12:40 - 13:15 |
12:40 - 13:15 |
12:40 - 13:15 |
12:40 - 13:15 |
13:15 - 13:45 |
|||
13:45 - 15:00 |
13:45 - 15:00 |
13:45 - 15:00 |
|
15:00 - 15:15 |
|||
15:15 - 16:30 |
15:15 - 16:30 |
15:15 - 16:30 |
|
16:30 - 16:45 |
|||
16:45 - 17:15 |
|||
17:15 - 18:15 |
|||
18:15 - 18:55 |
2020ǯ8·î20Æü(ÌÚ) |
Âê̾ | ̵Àþ¼°Îó¼ÖÀ©¸æ¥·¥¹¥Æ¥à¤Î¤¿¤á¤Î¥ì¡¼¥ëÇËÃǸ¡ÃβóÏ©¤Îɾ²Á |
Ãø¼Ô | ¡ý˾·î ½ÙÅÐ, ˾·î ´², ÃæÂ¼ ±ÑÉ× (ÆüËÜÂç³ØÂç³Ø±¡Íý¹©³Ø¸¦µæ²Ê), ÀÐÀî λ, º´Ìî ¼Â (µþ»°À½ºî½ê) |
¥Ú¡¼¥¸ | pp. 1 - 4 |
¥¡¼¥ï¡¼¥É | Å´Æ»¿®¹æ¥·¥¹¥Æ¥à, ̵Àþ¼°Îó¼ÖÀ©¸æ¥·¥¹¥Æ¥à, ¥ì¡¼¥ëÇËÃǸ¡ÃÎ |
¥¢¥Ö¥¹¥È¥é¥¯¥È | ½¾Íè¤ÎÅ´Æ»¿®¹æ¥·¥¹¥Æ¥à¤Ç¤Ï¥ì¡¼¥ë¡Êµ°Æ»²óÏ©¡Ë¤òÍѤ¤¤¿¹½À®¤¬¼çή¤È¤Ê¤Ã¤Æ¤¤¤ë¤¬¡¤¶áǯ¡¤ÃϾåÀßÈ÷ºï¸º¤Ë¤è¤ë·ÐºÑÀ¸þ¾å¤Ê¤É¤òÌÜŪ¤È¤·¤ÆÌµÀþ¼°Îó¼ÖÀ©¸æ¥·¥¹¥Æ¥à¤Î¸¦µæ³«È¯¤¬À¹¤ó¤Ë¹Ô¤ï¤ì¤Æ¤ª¤ê¡¤¤¹¤Ç¤Ë¤¤¤¯¤Ä¤«¤ÎÅ´Æ»Àþ¶è¤Ç¼ÂÍѲ½¤µ¤ì¤Æ¤¤Æ¤¤¤ë¡¥¤¿¤À¤·¡¤ËÜ¥·¥¹¥Æ¥à¤Ç¤Ï½¾Íè¤Î¥ì¡¼¥ë¤Ëή¤ì¤Æ¤¤¤¿À©¸æ¿®¹æ¤¬Â¸ºß¤·¤Ê¤¤¤¿¤á¡¤¤½¤ì¤¬Ã´¤Ã¤Æ¤¤¤¿¥ì¡¼¥ëÇËÃǸ¡Ãε¡Ç½¤ò¼Â¸½¤¹¤ë¿·¤¿¤Ê¹½À®¤ò¹Í¤¨¤ëɬÍפ¬¤¢¤ë¡¥°Ê¾å¤òƧ¤Þ¤¨¤Æ¡¤Ëܸ¦µæ¤Ç¤Ï¥ì¡¼¥ë¤ËÂФ·¤Æ´Êñ¤Ê¸¡Ãο®¹æ¤òÁ÷¿®¤¹¤ë¤³¤È¤Ç¡¤¥ì¡¼¥ëÇËÃDzսê¤òÆÃÄê¤Ç¤¤ë²óÏ©¹½À®¤òÄ󰯤·¡¤¤½¤ÎÍÍÑÀ¤ò²óÏ©¥·¥ß¥å¥ì¡¼¥¿¤Ë¤è¤êɾ²Á¤·¤¿¡¥ |
Âê̾ | ¥Ö¥ê¥Ã¥¸²óÏ©¤ËŬ¤·¤¿GaN HEMT¸þ¤±Ã±°ìÅŸ»¶îư3¥ì¥Ù¥ëÅ۵À©¸æ¥²¡¼¥È¥É¥é¥¤¥Ð |
Ãø¼Ô | ¡ýÄ¹Èø ëΰìϺ, ¸ÅÅÄ ½á, ¾®ÎÓ ÏÂ½Ê (µþÅÔ¹©·ÝÁ¡°ÝÂç³ØÂç³Ø±¡) |
¥Ú¡¼¥¸ | pp. 5 - 9 |
¥¡¼¥ï¡¼¥É | ¥²¡¼¥È¥É¥é¥¤¥Ð, GaN HEMT, ¸íÅÀ¸Ì, µÕƳÄÌ»¼º, ÅÅÎÏÊÑ´¹²óÏ© |
¥¢¥Ö¥¹¥È¥é¥¯¥È | ¼¡À¤Âå¥Ñ¥ï¡¼¥Ç¥Ð¥¤¥¹¤Ç¤¢¤ëGaN HEMT¤Ï¥ª¥óÄñ¹³¤ä¹â¼þÇÈÆÃÀ¤Ê¤É¥Ç¥Ð¥¤¥¹ÆÃÀ¤¬½¾Íè¤ÎSi¥Ç¥Ð¥¤¥¹¤ËÈæ¤ÙÍ¥¤ì¤Æ¤¤¤ë¤³¤È¤«¤é¡¢ÅÅÎÏÊÑ´¹²óÏ©¤Î¾®·¿·ÚÎ̲½¡¢¹â¸úΨ²½¤¬¼Â¸½¤Ç¤¤ë¡£°ìÊý¤Ç¡¢GaN HEMTÆÃͤβÝÂ꤬¸ºß¤·¡¢ÅÅÎÏÊÑ´¹²óÏ©¤Ø±þÍѤ¹¤ëºÝ¤ÏÂкö¤¬É¬¿Ü¤Ç¤¢¤ë¡£ËܹƤǤϡ¢¸íÅÀ¸Ì¤ÎËÉ»ß¤ÈµÕÆ³ÄÌ»¼º¤ÎÄ㸺¤òÌÜŪ¤ËGaN HEMT¸þ¤±¤Îñ°ìÅŸ»¤Ç3¥ì¥Ù¥ë¤Î¥²¡¼¥ÈÅ۵À©¸æ¤¬²Äǽ¤Ê¥²¡¼¥È¥É¥é¥¤¥Ö²óÏ©¤òÄ󰯤¹¤ë¡£¼Â¬¤Ë¤è¤ê¡¢Ä󰯲óÏ©¤Ï¸íÅÀ¸Ì¤ÎËÉ»ß¤ÈµÕÆ³ÄÌ»¼º¤òÄ㸺¤Ç¤¡¢¹ß°µ¥³¥ó¥Ð¡¼¥¿¤Ë¼ÂÁõ¤¹¤ë¤³¤È¤Ç½¾Íè¼êË¡¤ÈÈæ³Ó¤·¤ÆÅÅÎÏÊÑ´¹¸úΨ¤ò1.6%¸þ¾å¤Ç¤¤¿¡£ |
Âê̾ | ½¸ÀѥʥΥե©¥È¥Ë¥¯¥¹¤Ë´ð¤Å¤¯¸÷¥Ë¥å¡¼¥é¥ë¥Í¥Ã¥È¥ï¡¼¥¯¤òÂоݤȤ·¤¿²óÏ©¥¢¡¼¥¥Æ¥¯¥Á¥ãõº÷ |
Ãø¼Ô | ¡ýÉþÉô ľ¼ù, ÁýÅÄ Ë, Àи¶ µü (̾¸Å²°Âç³Ø¾ðÊ󳨏¦µæ²Ê), ±ö¸« ½à (µþÅÔÂç³Ø¾ðÊ󳨏¦µæ²Ê), ¿·²È ¾¼É§, ǼÉÙ ²íÌé (NTT ¥Ê¥Î¥Õ¥©¥È¥Ë¥¯¥¹¥»¥ó¥¿/NTT ʪÀ²Ê³Ø´ðÁø¦µæ½ê) |
¥Ú¡¼¥¸ | pp. 10 - 15 |
¥¡¼¥ï¡¼¥É | ¸÷¥Ë¥å¡¼¥é¥ë¥Í¥Ã¥È¥ï¡¼¥¯, ÇÈĹʬ³ä¿½Å, ¿¯Æþ¸¡ÃÎ¥·¥¹¥Æ¥à |
¥¢¥Ö¥¹¥È¥é¥¯¥È | ½¸ÀѥʥΥե©¥È¥Ë¥¯¥¹µ»½Ñ¤ÎµÞ®¤ÊȯŸ¤òÇØ·Ê¤Ë¡¤½¸ÀѥʥΥե©¥È¥Ë¥¯¥¹¤Ë´ð¤Å¤¤¤Æ¥Ë¥å¡¼¥é¥ë¥Í¥Ã¥È¥ï¡¼¥¯¤ò¹½ÃÛ¤¹¤ë¸÷¥Ë¥å¡¼¥é¥ë¥Í¥Ã¥È¥ï¡¼¥¯¤Î¸¦µæ¤¬³èȯ²½¤·¤Æ¤¤¤ë¡¥¸÷¥Ë¥å¡¼¥é¥ë¥Í¥Ã¥È¥ï¡¼¥¯¤Ï¡¤¥Í¥Ã¥È¥ï¡¼¥¯Æâ¤Î¸÷¤ÎÄ̲á¤À¤±¤Ç¿äÏÀ½èÍý¤ò´°·ë¤Ç¤¤ë¤¿¤áCMOS¥²¡¼¥È¤Ë´ð¤Å¤¯¥Ë¥å¡¼¥é¥ë¥Í¥Ã¥È¥ï¡¼¥¯¤è¤ê°ì ·å°Ê¾å¤Î¹â®¤Ê¿äÏÀ½èÍý¤¬´üÂԤǤ¤ë¡¥ËܹƤǤϡ¤¸÷ÄÌ¿®µ»½Ñ¤Î°ì¤Ä¤Ç¤¢¤ëÇÈĹʬ³ä¿½Å¤ò³èÍѤ·¤¿¥Ù¥¯¥È¥ë¹ÔÎóÀѱ黻²óÏ©¤Ë¤Ä¤¤¤Æ½Ò¤Ù¤ë¡¥¤Þ¤¿¡¤¸÷²óÏ©¥·¥ß¥å¥ì¡¼¥¿¤òÍѤ¤¤¿¥·¥ß¥å¥ì¡¼¥·¥ç¥ó·ë²Ì¤ò¼¨¤¹¡¥ºÇ¸å¤Ë¡¤¥Í¥Ã¥È¥ï¡¼¥¯¤Ø¤Î¿¯Æþ¸¡ÃÎ¥·¥¹¥Æ¥à¤òÂоݤˡ¤Â¿Áإѡ¼¥»¥×¥È¥í¥ó¤Î½¸ÀѥʥΥե©¥È¥Ë¥¯¥¹¼ÂÁõ¤ËŬ¤·¤¿²óÏ©¹½Â¤¤Ë¤Ä¤¤¤ÆµÄÏÀ¤¹¤ë¡¥ |
Âê̾ | (¾·ÂÔ¹Ö±é) ¥Ù¥¤¥¸¥¢¥ó¿¼Áإ˥塼¥é¥ë¥Í¥Ã¥È¤Î¥Ï¡¼¥É¥¦¥§¥¢¥¢¥¯¥»¥é¥ì¡¼¥·¥ç¥ó |
Ãø¼Ô | ¡û°ÀÌî ⫸÷ (ÂçºåÂç³ØÂç³Ø±¡¾ðÊó²Ê³Ø¸¦µæ²Ê ¾ðÊó¥·¥¹¥Æ¥à¹©³ØÀì¹¶) |
¥Ú¡¼¥¸ | p. 16 |
¥¡¼¥ï¡¼¥É | ¥Ù¥¤¥º¿äÏÀ, ¿¼Áسؽ¬, ÉԳμÂÀ, °ÂÁ´À |
¥¢¥Ö¥¹¥È¥é¥¯¥È | ¿¼Áإ˥塼¥é¥ë¥Í¥Ã¥È¡ÊDNN¡Ëµ»½Ñ¤Î¼Ò²ñ¼ÂÁõ¤Ë¤è¤ëľÀÜŪ¤ÊϫƯÎϤÎÄ󶡤¬ÀÚ˾¤µ¤ì¤Æ¤¤¤ë¡¥°ìÊý¤Ç¡¤DNN¤Î¿äÏÀ¸í¤ê¤¬°ú¤µ¯¤³¤¹¼Ò²ñŪ»¼º¤¬ÌäÂê»ë¤µ¤ì¤Æ¤¤¤ë¡¥¤½¤³¤Ç¡¤Ëֱܹé¤Ç¤Ï¡¤¿äÏÀ¤Î³Î¤«¤é¤·¤µ¤òɾ²Á¤¹¤ëÏÈÁȤߤǤ¢¤ë¥Ù¥¤¥º¿äÏÀ¤È¡¤¤½¤ÎDNN±þÍѤǤ¢¤ë¥Ù¥¤¥¸¥¢¥óDNN¡ÊBDNN¡Ë¡¤¹¹¤Ë¡¤¹Ö±é¼Ô¤¬¼è¤êÁȤó¤Ç¤¤¤ëBDNN¤Î¥Ï¡¼¥É¥¦¥§¥¢¥¢¥¯¥»¥é¥ì¡¼¥·¥ç¥óµ»½Ñ¤ò¾Ò²ð¤¹¤ë¡¥ |
Âê̾ | ǾÇȤΥե饯¥¿¥ë²òÀϤ˴ð¤Å¤¤¤¿Ä¶²Äݥϥ¤¥ì¥¾²»¸»¤Î´¶À·×¬ |
Ãø¼Ô | ¡ûÃæÀî ¶©¹° (Ĺ²¬µ»½Ñ²Ê³ØÂç³Ø ¹©³ØÉô) |
¥Ú¡¼¥¸ | pp. 17 - 22 |
¥¡¼¥ï¡¼¥É | ǾÇÈ, ¥Õ¥é¥¯¥¿¥ë, ´¶À, ·×¬ |
¥¢¥Ö¥¹¥È¥é¥¯¥È | Ëܸ¦µæ¤Ç¤Ï¡¢½¾Íè¤ÎCDÉʼÁ¤Î°µ½Ì²»¸»¤ËÈæ¤Ù¤Æ¡¢¿Í´Ö¤Î²ÄİÂÓ°è¤òͤ¨¤ë¼þÇÈ¿ô¤ò´Þ¤à¥Ï¥¤¥ì¥¾²»¸»¤¬¡¢¿Í´Ö¤¬´¶¤¸¤ë´¶³Ð¡¢Ç§ÃΤËÂФ¹¤ë±Æ¶Á¤òǾ¤Î³èư¾õÂÖ¤òÄ̤¸¤Æ±Æ¶Á¤òµÚ¤Ü¤¹¤³¤È¤òÄ´ºº¤¹¤ë¡£¶ñÂÎŪ¤Ë¤Ï¡¢¿Í´Ö¤Î´¶À¤ò¤È¤ê¤¢¤²¡¢Ç¾ÇȤΥե饯¥¿¥ëÆÃħÎ̤˴ð¤Å¤¤¤¿´¶À¼±Ê̤ˤè¤ê²÷¤ä´î¤Ó¡¢°Â¿´´¶¤È¤¤¤Ã¤¿Àµ¤Î´¶¾ð¤Î´µ¯¤Ë²Ã¤¨¡¢Åܤê¤äÉ԰¡¢¥¹¥È¥ì¥¹¤È¤¤¤Ã¤¿Éé¤Î´¶¾ð¤òϤ餲¤ë¸ú²Ì¤ò¸¡¾Ú¤¹¤ë¤³¤È¤òÌÜŪ¤È¤¹¤ë¡£ |
Âê̾ | ³°Íð¤òȼ¤¦»£±Æ²èÁü¤ÈÃϿ޲èÁü¤È¤Î¹âÀºÅ٥ޥåÁ¥ó¥°¤Ë´Ø¤¹¤ë¸¦µæ |
Ãø¼Ô | ¡ýÂç´Ø ͵ÂÀ, ¾®¸¶ ÀÅ²Ú (ÌÀ¼£Âç³ØÍý¹©³Ø¸¦µæ²ÊÅŵ¤¹©³ØÀì¹¶), ³ùÅÄ ¹°Ç· (ÌÀ¼£Âç³ØÍý¹©³ØÉôÅŵ¤ÅÅ»ÒÀ¸Ì¿³Ø²Ê) |
¥Ú¡¼¥¸ | pp. 23 - 28 |
¥¡¼¥ï¡¼¥É | ¥É¥í¥Í¡¼»°³Ñʬ³ä, AKAZEÆÃħÎÌ, K-NN |
¥¢¥Ö¥¹¥È¥é¥¯¥È | Ëܸ¦µæ¤Ï·îÌ̲èÁü¤Î»£±Æ²èÁü¤ÈÃϿ޲èÁü¤Î¥¯¥ì¡¼¥¿¤Î¸¡½Ð¤ò¹Ô¤¤¡¢¸¡½Ð¤µ¤ì¤¿¥¯¥ì¡¼¥¿¤òÍѤ¤¤Æ²èÁü´Ö¤Î¥¹¥±¡¼¥ëº¹¤òµá¤á¡¢¸íº¹Î¨¤ò»»½Ð¤¹¤ë¤³¤È¤òÌÜŪ¤È¤·¤Æ¤¤¤ë¡£¥¯¥ì¡¼¥¿¤Î¸¡½Ð¤Ë¤ÏAKAZEÆÃħÎ̤òÍѤ¤¡¢K-NN¡¢Ratio test¤Ë¤è¤Ã¤Æ¹Ê¤ê¹þ¤ß¤ò¹Ô¤Ã¤¿¡£¥Þ¥Ã¥Á¥ó¥°¤·¤¿»£±Æ²èÁü¤ÈÃϿ޲èÁü¤Î¥¯¥ì¡¼¥¿¤ò¤â¤È¤Ë¡¢¥É¥í¥Í¡¼»°³Ñʬ³ä¤òÍѤ¤¤Æ»°³Ñ·Á¤òºîÀ®¤·¡¢Î¾²èÁü¤Ë¤ª¤¤¤ÆÁê»÷¤Ê»°³Ñ·Á¤ò¸¡½Ð¤·¤¿¡£¸¡½Ð¤µ¤ì¤¿Áê»÷¤Ê»°³Ñ·Á¤òÍѤ¤¤Æ¥¹¥±¡¼¥ëº¹¤òµá¤á¡¢¸íº¹Î¨¤Î»»½Ð¤ò¹Ô¤¤¡¢ºÇ¸å¤Ë¹Í»¡¤ª¤è¤Óº£¸å¤Î²ÝÂê¤òÄ֤ä¿¡£ |
Âê̾ | ʬ´ô¤Ä¤°ì¼¡¸µ²»¶Á´É¥â¥Ç¥ë¤Ë¤è¤ëÀ¼Æ»ÃÇÌÌÀѤοäÄê |
Ãø¼Ô | ¡ýÃæÂ¼ ¾Ï¿Í, ¹â¶¶ ÃÒÇî (Å쳤Âç³ØÂç³Ø±¡¹©³Ø¸¦µæ²Ê) |
¥Ú¡¼¥¸ | pp. 29 - 34 |
¥¡¼¥ï¡¼¥É | À¼Æ»ÃÇÌÌÀÑ, °ì¼¡¸µ²»¶Á´É¥â¥Ç¥ë, Íü¾õãÝ |
¥¢¥Ö¥¹¥È¥é¥¯¥È | À¼Æ»ÃÇÌÌÀѤϡ¢Â¿¤¯¤ÎÀ¼Æ»ÊªÍý¥·¥ß¥å¥ì¡¼¥·¥ç¥ó¼êË¡¤Ë¤ª¤¤¤ÆÉ¬ÍפȤµ¤ì¤ë½ÅÍפʥѥé¥á¡¼¥¿¤Ç¤¢¤ë¡£À¼Æ»ÃÇÌÌÀѥǡ¼¥¿¤òÆÀ¤ë¤Ë¤Ï¡¢3¼¡¸µMRI¥Ç¡¼¥¿¤«¤éľÀÜÃê½Ð¤¹¤ë¤Û¤«¤Ë¡¢²»À¼¿®¹æ¤«¤é¿äÄꤹ¤ëÊýË¡¤¬Â¸ºß¤¹¤ë¡£ÆÃ¤Ë°ì¼¡¸µ²»¶Á´É¥â¥Ç¥ë¤Ë´ð¤Å¤¯¼êË¡¤ÏÈæ³ÓŪ¹â®¤ËÃÇÌÌÀѤò¿äÄê¤Ç¤¤ë¡£¤·¤«¤·¤Ê¤¬¤é¡¢°ì¼¡¸µ²»¶Á´É¥Ù¡¼¥¹¤Î¿äÄêË¡¤ÏAR¿äÄê¤Ë´ð¤Å¤¯¤¿¤á¡¢¥¹¥Ú¥¯¥È¥ë¤Î¹â°è¤Ë¸ºß¤¹¤ëë¤òŬÀڤ˰·¤¦¤³¤È¤¬¤Ç¤¤º¡¢ÃÇÌÌÀѤοäÄêÀºÅÙ¤¬°²½¤¹¤ëÌäÂ꤬¤¢¤ë¡£ËܹƤǤϡ¢À¼Æ»¤Îʬ´ô¹½Â¤¤ò´Þ¤á¤¿¥â¥Ç¥ë¤Ë¤è¤Ã¤ÆÀ¼Æ»ÃÇÌÌÀѤò¿äÄꤹ¤ë¼êË¡¤òÄ󰯤¹¤ë¡£¥·¥ß¥å¥ì¡¼¥·¥ç¥ó¼Â¸³¤Ë¤è¤ê¡¢Äó°ÆË¡¤Ë¤è¤ê½½Ê¬¤ÊÀºÅÙ¤ÇÃÇÌÌÀÑ´Ø¿ô¤¬µá¤á¤é¤ì¤ë¤³¤È¤¬¤ï¤«¤Ã¤¿¡£ |
Âê̾ | ¥Ñ¡¼¥·¥¹¥Æ¥ó¥È¡¦¥Û¥â¥í¥¸¡¼·²¤òÍѤ¤¤¿²»À¼¿®¹æ¤ÎÃÙ¤ì»þ´Ö¤Î¿äÄê¤È¤½¤Î¥«¥ª¥¹À¤Îɾ²Á¤Ë´Ø¤¹¤ë¸¦µæ |
Ãø¼Ô | ¡ýÅÏÉô ÎÏ, ¾®»³ ¹ÀÌï (ÌÀ¼£Âç³Ø±¡Íý¹©³Ø¸¦µæ²ÊÅŵ¤¹©³ØÀì¹¶), ³ùÅÄ ¹°Ç· (ÌÀ¼£Âç³ØÍý¹©³ØÉôÅŵ¤ÅÅ»ÒÀ¸Ì¿³Ø²Ê) |
¥Ú¡¼¥¸ | pp. 35 - 40 |
¥¡¼¥ï¡¼¥É | ¥«¥ª¥¹, ¥Ñ¡¼¥·¥¹¥Æ¥ó¥È¥Û¥â¥í¥¸¡¼, ²»À¼¿®¹æ, ÃÙ¤ì»þ´Ö, ÈóÀþ·Á²òÀÏ |
¥¢¥Ö¥¹¥È¥é¥¯¥È | ¥«¥ª¥¹»þ·ÏÎó²òÀϤˤª¤¤¤Æ,¥¢¥È¥é¥¯¥¿¤ÎºÆ¹½À®¤Ë¤Ï¡ÖÃÙ¤ì»þ´Ö¡×¤È¡ÖËä¤á¹þ¤ß¼¡¸µ¡×¤È¤¤¤¦2¤Ä¤Î¥Ñ¥é¥á¡¼¥¿¤Î¿äÄ꤬ɬÍפˤʤ롥¸½ºß¡¤²»À¼¿®¹æ¤ÎÃÙ¤ì»þ´Ö¤Ï´ðËܼþÇÈ¿ô¤ËÁêÅö¤¹¤ë¤È¤¤¤ï¤ì¤Æ¤¤¤ë¤¬¡¤³Î¸Ç¤¿¤ëº¬µò¤Ï¤Ê¤¤¡¥¤½¤³¤ÇËÜÏÀʸ¤Ç¤Ï¥Ñ¡¼¥·¥¹¥Æ¥ó¥È¡¦¥Û¥â¥í¥¸¡¼¤È¸Æ¤Ð¤ì¤ë¡¤¥¢¥È¥é¥¯¥¿¤Î´ö²¿³ØÅªÆÃħ¤ËÃåÌܤ·¤¿¼êË¡¤òÍѤ¤¤ÆÃÙ¤ì»þ´Ö¤Î¿äÄê¤ò¹Ô¤¤¡¤ÆÀ¤ë¤é¤ì¤¿·ë²Ì¤è¤ê¥ê¥¢¥×¥Î¥Õ»Ø¿ô¤Ë¤è¤ë¥«¥ª¥¹À¤Îɾ²Á¤ò¤¹¤ë¤³¤È¤Ç¡¤²»À¼¤ÎÆÃħ²òÀϤξ¤Î¥¢¥×¥í¡¼¥Á¤Î²ÄǽÀ¤Ë¤Ä¤¤¤Æ¤Î¸¡¾Ú¤ò¹Ô¤Ã¤¿¡¥ |
Âê̾ | 4³¬¥Æ¥ó¥½¥ë¹½Â¤¤òÍøÍѤ·¤¿¥é¥¤¥È¥Õ¥£¡¼¥ë¥É¥Î¥¤¥º½üµî |
Ãø¼Ô | ¡ûË̸¶ ÂçÃÏ, ¾®Àî ²Â¸ê, ¶âƼ ÈþÍÛ, Ê¿ÎÓ ¹¸ (Ω̿´ÛÂç³Ø ¾ðÊóÍý¹©³ØÉô) |
¥Ú¡¼¥¸ | pp. 41 - 46 |
¥¡¼¥ï¡¼¥É | ¥é¥¤¥È¥Õ¥£¡¼¥ë¥É, ¥Ç¥Î¥¤¥¸¥ó¥°, Tuckerʬ²ò, ¥â¡¼¥ÉŸ³«, ÈóÆÌºÇŬ²½ |
¥¢¥Ö¥¹¥È¥é¥¯¥È | ¶õ´ÖÆâ¤Î³ÆÅÀ¤Ë¤ª¤±¤ë³ÆÊý¸þ¤Î¸÷Àþ¤Î¶¯ÅÙʬÉۤϥ饤¥È¥Õ¥£¡¼¥ë¥É¤È¸Æ¤Ð¤ì¡¤Â¿»ëÅÀ²èÁü·²¤È¤·¤ÆÉ½¸½¤µ¤ì¤ë¤³¤È¤¬Â¿¤¤¡¥¥Þ¥¤¥¯¥í¥ì¥ó¥º¥¢¥ì¥¤¤òÍѤ¤¤Æ¼èÆÀ¤µ¤ì¤¿Â¿»ëÅÀ¥«¥é¡¼²èÁü·²¤Ï¡¤»ëÅÀ¤´¤È¤Ë¥Î¥¤¥º¥ì¥Ù¥ë¤¬°Û¤Ê¤ë¤¿¤á¡¤3³¬¥Æ¥ó¥½¥ë¤òÍøÍѤ¹¤ë½¾ÍèË¡¤Ç¤ÏŬÀڤ˥Υ¤¥º½üµî¤ò¹Ô¤¦¤³¤È¤¬º¤Æñ¤Ç¤¢¤Ã¤¿¡¥Äó°ÆË¡¤Ç¤Ï¡¤4 ³¬¥Æ¥ó¥½¥ë¤È»ëÅÀ°Í¸¤Î¥Ç¡¼¥¿À°¹çÀÀ©Ìó¤òÍøÍѤ¹¤ë¤³¤È¤Ç¡¤³Æ»ëÅÀ¤ÇRGBÀ®Ê¬Á´°è¤ËÅϤäÆÅ¬Àڤ˥Υ¤¥º½üµî¤ò¹Ô¤¦¡¥¿ôÃͼ¸³¤Ë¤ª¤¤¤Æ¡¤Á´¤Æ¤Î»ëÅÀ¤ÇÄó°ÆË¡¤¬½¾ÍèË¡¤è¤êŬÀڤ˥Υ¤¥º¤ò½üµî¤Ç¤¤ë¤³¤È¤ò¼¨¤¹¡¥ |
Âê̾ | ¶á»÷Ʊ»þÂгѲ½ÌäÂê¤Î²òË¡¤Ë´ð¤Å¤¯¥Ö¥é¥¤¥ó¥É¿®¹æÊ¬Î¥ |
Ãø¼Ô | ¡ûã·Æ£ ¿¸ºÈ, ÂçÀÐ Ë®É× (Åìµþ¹©²ÊÂç³ØÂç³Ø±¡¥Ð¥¤¥ª¡¦¾ðÊó¥á¥Ç¥£¥¢¸¦µæ²Ê), ¸ÅÀî ÍøÇî (ÅìµþÍý²ÊÂç³Ø¹©³ØÉô¾ðÊ󹩳زÊ) |
¥Ú¡¼¥¸ | pp. 47 - 52 |
¥¡¼¥ï¡¼¥É | ¶á»÷Ʊ»þÂгѲ½ÌäÂê, ¥Ö¥é¥¤¥ó¥É¿®¹æÊ¬Î¥ |
¥¢¥Ö¥¹¥È¥é¥¯¥È | ALSP¥¢¥ë¥´¥ê¥º¥à¤Ç¤Ï¡¤ºÇ¾®2¾èË¡¤òÍѤ¤¤ÆDLS ɾ²ÁÎ̤òºÇ¾®¤¹¤ëÂгѲ½¹ÔÎóB¤òµá¤á¡¤À©Ìó¾ò·ï¤ò¼ÌÁü¤Ë¤è¤Ã¤Æ²Ý¤·¤Æ¤¤¤ë¡¥ALSP¥¢¥ë¥´¥ê¥º¥à¤ÎÆÃħ¤ÏKhatri-Rao (KR) ÀѤòÍøÍѤ¹¤ë¤È¡¤»ö¼Â¾å¡¤ÂгѲ½¹ÔÎóB ¤Ë´Ø¤·¤ÆDLS ɾ²ÁÎ̤ò2 ¼¡·Á¼°¤Çɽ¸½¤Ç¤¡¤´û¸¤ÎºÇ¾®²½¼êË¡¤¬ÍøÍѤǤ¤ë¤³¤È¤Ç¤¢¤ë¤¬¡¤¼ý«À¤¬°¤¤¤³¤È¤¬»ØÅ¦¤µ¤ì¤Æ¤¤¤ë¡¥ËÜÏÀʸ¤Ç¤Ï¡¤ALSP ¥¢¥ë¥´¥ê¥º¥à¤ÎÍøÅÀ¤òÀ¸¤«¤·¡¤·çÅÀ¤ò¹îÉþ¤¹¤ëÊýË¡¤òÄ󰯤·¡¤¥Ö¥é¥¤¥ó¥É¿®¹æ¸»Ê¬Î¥¤Ë±þÍѤ¹¤ë¡¥ |
Âê̾ | Approximate-Then-Diagonalize-Simultaneously Algorithm and Tensor CP Decomposition |
Ãø¼Ô | ¡ýÌÀ´Ö Φ, »³´ß ¾»É×, »³ÅÄ ¸ù (Åìµþ¹©¶ÈÂç³Ø) |
¥Ú¡¼¥¸ | pp. 53 - 58 |
¥¡¼¥ï¡¼¥É | Canonical Polyadic (CP) decomposition, Approximate simultaneous diagonalization, Structured low-rank approximation, Alternating projection |
¥¢¥Ö¥¹¥È¥é¥¯¥È | In this paper, we present a novel two-step strategy, called Approximate-Then-Diagonalize-Simultaneously (ATDS) algorithm, for Approximate Simultaneous Diagonalization (ASD). The ATDS algorithm decomposes the ASD of a given tuple of matrices into (Step 1) finding a tuple of simultaneously diagonalizable matrices close to the given one and (Step 2) finding a common similarity transformation which diagonalizes exactly the tuple obtained in Step 1. We also propose to apply the ATDS algorithm to Canonical Polyadic (CP) decomposition of a higher-order tensor with its reasonable translation into ASD. Numerical experiments show that the proposed approach for CP decomposition outperforms existing methods especially in the ill-conditioned cases. |
Âê̾ | (¾·ÂÔ¹Ö±é) °åÍѲèÁü¿ÇÃǤˤª¤±¤ëºÇ¶á¤ÎAI/¥Ç¥£¡¼¥×¥é¡¼¥Ë¥ó¥°¤ÎÏÃÂê |
Ãø¼Ô | ¡ûÆ£ÅÄ ¹»Ö (´ôÉìÂç³Ø ¹©³ØÉô) |
¥Ú¡¼¥¸ | pp. 59 - 61 |
¥¡¼¥ï¡¼¥É | °åÍѲèÁü, AI, ¿¼Áسؽ¬, ²èÁü¿ÇÃǻٱç |
¥¢¥Ö¥¹¥È¥é¥¯¥È | Âè3¼¡¿Í¹©ÃÎǽ¡ÊAI¡Ë¥Ö¡¼¥à¤ò·Þ¤¨¡¤¥³¥ó¥Ô¥å¡¼¥¿¤¬¼«¤é³Ø½¬¤¹¤ë¡Öµ¡³£³Ø½¬¡×Ë¡¤Î°ì¼ï¤Ç¤¢¤ë¡Ø¥Ç¥£¡¼¥×¥é¡¼¥Ë¥ó¥°¡Ùµ»½Ñ¤Î½Ð¸½¤Ë¤è¤ê¡¤²èÁüǧ¼±¤ÎÀºÅÙ¤¬¿Í´Ö¤ÎÀºÅÙ¤òͤ¨¤ë¥ì¥Ù¥ë¤Ë㤷¤Æ¤¤¤ë¡¥°åÎÅʬÌî¤Ë¤ª¤±¤ëAI¤Î³«È¯¡¦Æ³Æþ¤âµÞ·ã¤Ë¿Ê¤ó¤Ç¤¤¤ë¡¥2017ǯ7·î¤Ë¡¤¸üÀ¸Ï«Æ¯¾Ê¤Îº©Ïòñ¤Ï¡¤AI¤òÍøÍѤ·¤¿Éµ¤¤Î¿ÇÃǤä°åÌôÉʳ«È¯¤Î»Ù±ç¤ò¡¤2020ǯÅ٤ˤâ¼Â¸½¤¹¤ë¤³¤È¤òÀ¹¤ê¹þ¤ó¤ÀÊó¹ð½ñ¤ò¸øÉ½¤·¡¤ÆÃ¤Ë³«È¯¤ò¿Ê¤á¤ë½ÅÅÀÎΰè¤È¤·¤Æ¡¤¡Ö¥²¥Î¥à°åΚס¤¡Ö²èÁü¿ÇÃǻٱç¡×¡¤¡Ö¿ÇÃÇ¡¦¼£ÎŻٱç¡×¡¤¡Ö°åÌôÉʳ«È¯¡×¤Î4Îΰè¤òµó¤²¤Æ¤¤¤ë¡¥Ëֱܹé¤Ç¤Ï¡¤²èÁü¿ÇÃǻٱçÎΰè¤Ë¤ª¤±¤ëAIƳÆþ¤Î¸½¾õ¤È²ÝÂꡤ¾ÍèŸ˾¤Ë¤Ä¤¤¤Æ³µÀ⤹¤ë¡¥ |
Âê̾ | Improving Defect Coverage of Testing Power TSVs by Increasing Sensitivity to TSV Resistance |
Ãø¼Ô | ¡ûKoutaro Hachiya (Teikyo Heisei University) |
¥Ú¡¼¥¸ | pp. 62 - 67 |
¥¡¼¥ï¡¼¥É | 3D-IC, TSV, open defect, defect coverage |
¥¢¥Ö¥¹¥È¥é¥¯¥È | The increasing complexity of power distribution networks (PDNs) in 3D stacked ICs is raising demand for testing power TSVs because defects in PDNs can cause intermittent unwanted behavior of the circuits. A method to detect open defects of power TSVs by measuring resistances between micro-bumps was proposed. But it suffers from low sensitivity to change of TSV resistance resulting in low defect coverage. In this paper, a method is proposed which improves the sensitivity by changing dimensions of PDN in 3D-IC with two stacked dies. The simulation results show that the method improves defect coverage of detecting both full-open and resistive-open defects of power TSVs. |
Âê̾ | NoC¤Ë¤ª¤±¤ëÂѸξ㡦·èÄêŪ¥ë¡¼¥Æ¥£¥ó¥°Ë¡¤ËÂФ¹¤ë²¾ÁÛ¥Á¥ã¥Í¥ë¤ÎŬÍѸú²Ì |
Ãø¼Ô | ¡ý¹õÀî ÍÛÂÀ, Ê¡»Î ¾ (»³¸ýÂç³ØÂç³Ø±¡ÁÏÀ®²Ê³Ø¸¦µæ²Ê) |
¥Ú¡¼¥¸ | pp. 68 - 73 |
¥¡¼¥ï¡¼¥É | Network-on-chip (NoC), ÂѸξã¥ë¡¼¥Æ¥£¥ó¥°, 2¼¡¸µ¥á¥Ã¥·¥å, ²¾ÁÛ¥Á¥ã¥Í¥ë |
¥¢¥Ö¥¹¥È¥é¥¯¥È | ËÜÊó¹ð¤Ç¤Ï¡¤¥Í¥Ã¥È¥ï¡¼¥¯¥ª¥ó¥Á¥Ã¥×¡ÊNoC¡Ë¸þ¤±¤ÎÂѸξ㡦·èÄêŪ¥ë¡¼¥Æ¥£¥ó¥°Ë¡¤ËÂФ·¤Æ¡¤ÄÌ¿®Àǽ¤Î¸þ¾å¤Î¤¿¤á¤Î²¾ÁÛ¥Á¥ã¥Í¥ë¡ÊVC¡Ë¤ÎŬÍѸú²Ì¤òÌÀ¤é¤«¤Ë¤¹¤ë¡¥¤³¤ì¤Þ¤Ç¤ËÄ󰯤µ¤ì¤Æ¤¤¿ÂѸξã¥ë¡¼¥Æ¥£¥ó¥°Ë¡¤Ï¡¤¡Ê1¡ËVC¤òÍѤ¤¤ë¥¢¥×¥í¡¼¥Á¤È¡Ê2¡ËVC¤òÍѤ¤¤Ê¤¤¥¢¥×¥í¡¼¥Á¤Î2¤Ä¤ËʬÎव¤ì¤ë¡¥Î¾¥¢¥×¥í¡¼¥Á¤Î¼êË¡¤Ë¤ª¤¤¤Æ¡¤¼ÂÁõ¤ËɬÍפˤʤë²óÏ©Î̤¬Â礤¯°Û¤Ê¤ë¤¿¤á¡¤¥¢¥×¥í¡¼¥Á´Ö¤Ç¤ÎÀÇ½Èæ³Ó¤Ï¤¢¤Þ¤ê¹Ô¤ï¤ì¤Æ¤³¤Ê¤«¤Ã¤¿¡¥°ìÊý¤Ç¡¤VC¤Ïº®»¨´ËÏ¤Τ¿¤á¤ËÍѤ¤¤ë¤³¤È¤â²Äǽ¤Ç¤¢¤ë¤¿¤á¡¤¡Ê2¡Ë¤Ë´ð¤Å¤¯¼êË¡¤ËVC¤òÄɲ䷤ơÊ1¡Ë¤Î¼êË¡¤ÈÄÌ¿®Àǽ¤ÎÈæ³Ó¤ò¹Ô¤¦¡¥É¾²Á¤Ë¤Ï¡¤·èÄêŪ¤ÊÂѸξã¥ë¡¼¥Æ¥£¥ó¥°Ë¡¤òÂоݤȤ·¤¿¡¥¤½¤Î·ë²Ì¡¤VC¤òÍѤ¤¤ë¼êË¡¤è¤ê¤â¡¤ÍѤ¤¤ºÌÜŪÃϤޤǤηÐϩŤ¬Ã»¤¤¼êË¡¤¬¤É¤Î¾ì¹ç¤Ë¤ª¤¤¤Æ¤â80%°Ê¾åÀǽ¤¬¹â¤¤¤³¤È¤¬Ê¬¤«¤Ã¤¿¡¥ |
Âê̾ | ¶á»÷·×»»¤Ë¤ª¤±¤ë¥Í¥Ã¥ÈÂФΥޡ¼¥¸¤Ë¤è¤ë²óÏ©¤È¥ì¥¤¥¢¥¦¥È¤ÎÀß·×¼êË¡ |
Ãø¼Ô | ±©ÅÄ ´î¸÷, ¡û¾®Ê¿ ¹Ô½¨ (²ñÄÅÂç³Ø) |
¥Ú¡¼¥¸ | pp. 74 - 79 |
¥¡¼¥ï¡¼¥É | ¶á»÷·×»», ¥ì¥¤¥¢¥¦¥ÈÀß·×, ÏÀÍý¹çÀ®, ¥Í¥Ã¥ÈÂФΥޡ¼¥¸ |
¥¢¥Ö¥¹¥È¥é¥¯¥È | ¶áǯ¡¤²èÁü½èÍý¤äµ¡³£³Ø½¬¤Ê¤É¤Î·×»»Î̤襤¥¢¥×¥ê¥±¡¼¥·¥ç¥ó¤òLSI¤äFPGA¤È¤¤¤Ã¤¿½¸ÀѲóÏ©¤Ë¼ÂÁõ¤¹¤ë¤³¤È¤Ç¡¤·×»»¤Î¸úΨ²½¤ò¿Þ¤ë¸¦µæ¤¬À¹¤ó¤Ë¹Ô¤ï¤ì¤Æ¤¤¤ë¡¥¤½¤ì¤é¤Î¥¢¥×¥ê¥±¡¼¥·¥ç¥ó¤Î²óÏ©¤ÏLSI¤äFPGA¤Î¥ì¥¤¥¢¥¦¥ÈÀß·×¹©Äø¤Ç¤â°·¤¦ÌäÂê¤Îµ¬ÌϤ¬ÆÃ¤ËÂ礤¯¤Ê¤ë¡¥¤½¤³¤ÇËܹƤǤϡ¤ÀºÅ٤˽ÅÂç¤Ê±Æ¶Á¤òµÚ¤Ü¤µ¤Ê¤¤ÈÏ°Ï¤Ç¸íº¹¤ò´Þ¤à¤³¤È¤òµöÍÆ¤·¡¤·×»»¤Î¹â®²½¤ÈÄãÅÅÎϲ½¤ò¿Þ¤ë¶á»÷·×»»(Approximate Computing)¤ËÃíÌܤ¹¤ë¡¥ËܹƤǤϡ¤ÏÀÍý¹çÀ®¤È¥ì¥¤¥¢¥¦¥ÈÀ߷פˤª¤¤¤Æ¶á»÷·×»»¤òŬÍѤ¹¤ë¤³¤È¤ÇºÇÄã¸Â¤Î·×»»ÀºÅÙ¤òÊݤÁ¤Ä¤Ä¡¤À߷פθúΨ²½¤òÌܻؤ¹¡¥¥Í¥Ã¥ÈÂФΥޡ¼¥¸¤Ë¤Ä¤¤¤Æ¸¡Æ¤¤·¡¤·×»»¼Â¸³¤Ë¤ª¤¤¤Æ¤½¤Î¸ú²Ì¤ò³Îǧ¤¹¤ë¡¥ |
Âê̾ | (¾·ÂÔ¹Ö±é) Î̻ҥ³¥ó¥Ô¥å¡¼¥¿¤Î´ðÁäȥ·¥ê¥³¥ó¥Ï¡¼¥É¤Î¸¦µæ³«È¯ |
Ãø¼Ô | ¡û¿¹ µ®ÍÎ (»º¶Èµ»½ÑÁí¹ç¸¦µæ½ê) |
¥Ú¡¼¥¸ | p. 80 |
¥¡¼¥ï¡¼¥É | Î̻ҥ³¥ó¥Ô¥å¡¼¥¿, ¥·¥ê¥³¥óÎ̻ҥӥåÈ, ¥Ï¡¼¥É¥¦¥§¥¢ |
¥¢¥Ö¥¹¥È¥é¥¯¥È | ºòº£¤ÎÎ̻ҥ³¥ó¥Ô¥å¡¼¥¿¤Ø¤Î´üÂÔ¤ÏÏÀ¤òÂÔ¤¿¤Ê¤¤¡¥¥Ï¡¼¥É¥¦¥§¥¢³«È¯¤ÏĶÅÁƳÎ̻ҥӥåȤò´ðËÜÁǻҤȤ¹¤ëÊý¼°¤¬Àè¹Ô¤¹¤ë¤¬¡¤È¾Æ³ÂÎ¥·¥ê¥³¥óÎ̻ҥӥåÈÁǻҤˤÏÂ絬ÌϽ¸ÀѲ½¤È¹â²¹Æ°ºî¤Ø¤Î´üÂÔ¤¬¤¢¤ê¡¤Intel¼Ò¤ò»Ï¤á¤³¤ì¤Þ¤Ç½¸ÀѲóÏ©»º¶È¤ò»Ù¤¨¤Æ¤¤¿´ë¶È¡¦¸¦µæµ¡´Ø¤¬³«È¯¤ò¿Ê¤á¤Æ¤¤¤ë¡¥¹ñÆâ¤Ç¤ÏʸÉô²Ê³Ø¾Ê¸÷¡¦ÎÌ»ÒÈôÌö¥Õ¥é¥Ã¥°¥·¥Ã¥×¥×¥í¥°¥é¥à(Q-LEAP)¤òÃæ¿´¤ËÂç³Ø¡¦¸¦µæ½ê¤¬¤³¤ì¤Ë¼è¤êÁȤó¤Ç¤¤¤ë¡¥Ëֱܹé¤Ç¤Ï¡¤Á°È¾¤ËÎ̻ҥ³¥ó¥Ô¥å¡¼¥¿¤Î·×»»¡¦Æ°ºî¸¶Íý¤òÀìÌç³°¤ÎÊý¤Ë¸þ¤±¤ÆÆþÌçÊԤȰÌÃ֤Ť±¤é¤ì¤ë¤è¤¦¤Ê·Á¤Ç½Ò¤Ù¤ë¤³¤È¤ò»î¤ß¡¤¸åȾ¤Ç¤Ï¥·¥ê¥³¥óÎ̻ҵ»½Ñ¤Îư¸þ¤òQ-LEAP¤Ë¤ª¤±¤ë¸¦µæ³«È¯¤ÈÍí¤á¤Æ¾Ò²ð¤¹¤ë¡¥ |
Âê̾ | (¾·ÂÔ¹Ö±é) ʬ»ÒưÎϳإ·¥ß¥å¥ì¡¼¥·¥ç¥óÀìÍÑ·×»»µ¡MDGRAPE-4A¤Î³«È¯ |
Ãø¼Ô | ¡ûÂÙÃÏ ¿¿¹°¿Í (Íý²½³Ø¸¦µæ½ê) |
¥Ú¡¼¥¸ | pp. 81 - 83 |
¥¡¼¥ï¡¼¥É | ÀìÍÑ·×»»µ¡, SoC, ¹âÀǽ·×»» |
¥¢¥Ö¥¹¥È¥é¥¯¥È | ²æ¡¹¤Ï¤³¤ì¤Þ¤Ç¡¤²Ê³Ø·×»»¤Î¤¿¤á¤ÎÀìÍÑ·×»»µ¡¤Î³«È¯¤ò·Ñ³Ū¤Ë¹Ô¤Ã¤Æ¤¤¿¡¥¶áǯ¡¤Ê¬»ÒưÎϳإ·¥ß¥å¥ì¡¼¥·¥ç¥ó¤Î¤¿¤á¤ÎÀìÍÑ·×»»µ¡¡ÖMDGRAPE-4A¡×¤ò´°À®¤µ¤»¡¤ÁÏÌô±þÍÑÅù¤ò¿ä¿Ê¤·¤Æ¤¤¤ë¡¥MDGRAPE-4A¤Ï¡¤ÀìÍѤÎÂ絬ÌÏSoC 512¥Á¥Ã¥×¤ò¡¤¸÷¥Í¥Ã¥È¥ï¡¼¥¯¤ÇÀܳ¤·¤¿¥·¥¹¥Æ¥à¤Ç¤¢¤ë¡¥ËÜSoC¤Ï¡¤ÀìÍѤι⮱黻¥Ñ¥¤¥×¥é¥¤¥ó¤Ë²Ã¤¨¡¤RISC-V¥Ù¡¼¥¹¤Î¥«¥¹¥¿¥à²½¤µ¤ì¤¿ÈÆÍÑ¥³¥¢17¥³¥¢¡¤ÀìÍѲ½¤µ¤ì¤¿¥á¥â¥ê¡¤ÆÈ¼«¤ÎÄãÃÙ±ä¥Í¥Ã¥È¥ï¡¼¥¯¤òÁȤ߹ç¤ï¤»¤¿¤â¤Î¤Ç¤¢¤ë¡¥¹Ö±é¤Ç¤Ï¥·¥¹¥Æ¥à¤Î¾ÜºÙ¤È¡¤¼¡À¤Âå¤Î·×²è¤Ë¤Ä¤¤¤Æ¾Ò²ð¤·¤¿¤¤¡¥ |
Âê̾ | µ¡³£²Ã¹©¥¹¥±¥¸¥å¡¼¥ê¥ó¥°ÌäÂê¤Î»þ´Ö¥ª¡¼¥È¥Þ¥È¥ó¤Ë¤è¤ë¥â¥Ç¥ë²½¤È¥â¥Ç¥ë¸¡ºº¤Ë¤è¤ëºÇŬ²½ |
Ãø¼Ô | ¡ýß·»Þ Îɼù, ÃæÅÄ ¹¯Í¤, ÃæÂ¼ Àµ¼ù, ºç¸¶ °ìµª (ÉÙ»³¸©Î©Âç³Ø) |
¥Ú¡¼¥¸ | pp. 84 - 89 |
¥¡¼¥ï¡¼¥É | À¸»º¥¹¥±¥¸¥å¡¼¥ê¥ó¥°, »þ´Ö¥ª¡¼¥È¥Þ¥È¥ó, ¥â¥Ç¥ë¸¡ºº, UPPAAL |
¥¢¥Ö¥¹¥È¥é¥¯¥È | ¤â¤Î¤Å¤¯¤ê¤Î¸½¾ì¤Ë¤ª¤¤¤Æ¡¤²Ã¹©µ¡³£¤ÎƳÆþ¤Ë¤è¤ëÀ¸»º¹©Äø¤Î¼«Æ°²½¤¬¿Ê¤à°ìÊý¤Ç¡¤¥¹¥±¥¸¥å¡¼¥ë¤Ëµ¯°ø¤·¤ÆÀ¸»º¸úΨ¤¬ÄäÂÚ¤¹¤ë»öÎ㤬Êó¹ð¤µ¤ì¤Æ¤¤¤ë¡¥Ëܸ¦µæ¤Ç¤Ï¡¤¤³¤Î¤è¤¦¤Ê»öÎã¤Î°ì¤Ä¤È¤·¤Æ¥Þ¥·¥Ë¥ó¥°¥»¥ó¥¿¤Ë¤ª¤±¤ë¥¹¥±¥¸¥å¡¼¥ê¥ó¥°¤òÂоݤȤ·¡¤»þ´ÖÊѲ½¤òȼ¤¦ÌäÂê¤ò°·¤¦¤Î¤ËŤ±¤¿UPPAAL¥Ä¡¼¥ë¤òÍѤ¤¤Æ½àºÇŬ¥¹¥±¥¸¥å¡¼¥ë¤ÎƳ½Ð¤ò»î¤ß¤ë¡¥UPPAAL¥Ä¡¼¥ë¤Ë¤è¤ê¡¤ÌäÂê¤ò¥â¥Ç¥ë²½¤·¡¤¼ÂºÝ¤Î¸½¾ì¤Ç¤Î±¿ÍѤòÄ̤·¤Æ¡¤Æ³½Ð¤·¤¿¥¹¥±¥¸¥å¡¼¥ë¤ÎÂÅÅöÀ¤ò¸¡¾Ú¤¹¤ë¡¥ |
Âê̾ | Cardinality of Maximum Matchings in Uniformity-Nonadjacent Graphs |
Ãø¼Ô | ¡ûSatoshi Taoka, Toshimasa Watanabe (Hiroshima University) |
¥Ú¡¼¥¸ | pp. 90 - 94 |
¥¡¼¥ï¡¼¥É | The maximum cardinality matching problem, a dense graph |
¥¢¥Ö¥¹¥È¥é¥¯¥È | The subject of this paper is maximum matchings of graphs. An edge set M of a given graph G = (V, E) is called a matching if and only if any pair of edges in M share no endvertices. A maximum matching of G is a matching whose cardinality is maximum among those of G. For a fixed integer \sigma, a uniformity-nonadjacent graph is a simple graph such that for any vertex set X \subset V the number of nonadjacent pair {x, y} (that is, an edge (x, y) is not included in the graph) with x \in X and y \in V-X is at most \sigma. In this paper we show property of cardinality of maximum matchings in a uniformity-nonadjacent graph. This result can contribute improving time complexity of an algorithm of some problem. |
Âê̾ | ¼Ò²ñŪ;¾êºÇÂç²½¤ÎÏÈÁȤߤòÍѤ¤¤¿¥Ç¥Þ¥ó¥É¥ì¥¹¥Ý¥ó¥¹Àß·×¼êË¡ |
Ãø¼Ô | ¡û¹âÌî ¹Àµ®, µÈÅÄ ¾°ÍÎ (´ôÉìÂç³Ø/¹©³ØÉô Åŵ¤ÅŻҡ¦¾ðÊ󹩳زÊ), ÀõÌî ¹À»Ö (ÅÅÎÏÃæ±û¸¦µæ½ê/¥¨¥Í¥ë¥®¡¼¥¤¥Î¥Ù¡¼¥·¥ç¥óÁÏȯ¥»¥ó¥¿¡¼), ÇëÅç Íý (¶å½£Âç³Ø/Áí¹çÍý¹©³Ø¸¦µæ±¡), Nguyen Duc Tuyen (Power System Department, Hanoi University of Science and Technology) |
¥Ú¡¼¥¸ | pp. 95 - 100 |
¥¡¼¥ï¡¼¥É | ¥Ç¥Þ¥ó¥É¥ì¥¹¥Ý¥ó¥¹, ¼Ò²ñŪ;¾êºÇÂç²½, Åŵ¤ÎÁ¶â, ¥ê¥Ù¡¼¥È, ¶Ñ¹Õ²Á³Ê |
¥¢¥Ö¥¹¥È¥é¥¯¥È | ËܹƤǤϡ¤¼Ò²ñŪ;¾êºÇÂç²½¡ÊSWM: Social Welfare Maximization¡ËÌäÂê¤ÎÏÈÁȤߤòÍøÍѤ·¤Æ¡¤Åŵ¤ÎÁ¶â·¿DR¤ÎÅŵ¤ÎÁ¶â¡¤¥¤¥ó¥»¥ó¥Æ¥£¥Ö·¿DR¤ÎÊó½·Ã±²Á¤ò»»½Ð¤¹¤ë¼êË¡¤òÄ󰯤¹¤ë¡£SWMÌäÂê¤È¤Ï¡¤¼Ò²ñ¤ò·ÁÀ®¤¹¤ë·ÐºÑ¼çÂΤÎÊØ±×¡Ê;¾ê¡Ë¤Î½Å¤ß¤Å¤±Ï¤ò¤·¹ç¤ï¤»¤¿¤â¤Î¡Ê¼Ò²ñŪ;¾ê¤Þ¤¿¤Ï¼Ò²ñŪ¸üÀ¸¡Ë¤òºÇÂç²½¤¹¤ëÌäÂê¤Ç¤¢¤ë¡£Ä󰯼êË¡¤Ï¡¤¡ÅÅÎ϶¡µë¼Ô¤ÈÅÅÎϾÃÈñ¼Ô¤ÎÅÅÎϼè°ú¤òSWMÌäÂê¤È¤·¤ÆÉ½¸½¤¹¤ë¡¤¢»ÈÍÑÅÅÎϤÎÊѲ½¤Ëȼ¤¦Î¾¼Ô¤Î;¾ê¤ÎÁý¸º¤«¤éÅŵ¤ÎÁ¶â¤äÊó½·³Û¤ò»»½Ð¤¹¤ë¡¤¤È¤¤¤¦Æó¤Ä¤Î¥¹¥Æ¥Ã¥×¤Ë¤è¤Ã¤Æ¹½À®¤µ¤ì¤ë¡£¤Þ¤¿¡¤¿ôÃÍ·×»»¤òÄ̤·¤Æ¡¤Ä󰯼êË¡¤ÎÂÅÅöÀ¤ò¸¡¾Ú¤·¤¿·ë²Ì¤Ë¤Ä¤¤¤Æ¤âÊó¹ð¤¹¤ë¡£ |
Âê̾ | (¾·ÂÔ¹Ö±é) ½¸ÀѲóÏ©¤Î¥Ç¥£¥Ú¥ó¥À¥Ó¥ê¥Æ¥£¡Ý¥Æ¥¹¥Èµ»½Ñ¤È¤½¤Î±þÍÑ¡Ý |
Ãø¼Ô | ¡û°æ¾å ÈþÃÒ»Ò (ÆàÎÉÀèü²Ê³Øµ»½ÑÂç³Ø±¡Âç³Ø) |
¥Ú¡¼¥¸ | pp. 101 - 106 |
¥¡¼¥ï¡¼¥É | ½¸ÀѲóÏ©¥Æ¥¹¥È, ¿®ÍêÀ, ¥»¥¥å¥ê¥Æ¥£, ¥Ë¥å¡¼¥í¥â¥ë¥Õ¥£¥Ã¥¯¥³¥ó¥Ô¥å¡¼¥¿ |
¥¢¥Ö¥¹¥È¥é¥¯¥È | ½¸ÀѲóÏ©¤Î¥Æ¥¹¥È¤Ï¡¤¤½¤Î¥Ç¥£¥Ú¥ó¥À¥Ó¥ê¥Æ¥£¤ÎÊݾڤËɬ¿Ü¤Îµ»½Ñ¤Ç¤¢¤ë¡¥Ëֱܹé¤Ç¤Ï¡¤¥Æ¥¹¥ÈÀ¸À®¡¤¥¹¥¥ã¥óÀ߷ס¤ÁȤ߹þ¤ß¼«¸Ê¥Æ¥¹¥È¤Ê¤É¤Î½¸ÀѲóÏ©¤Î¥Æ¥¹¥Èµ»½Ñ¡¤¤ª¤è¤Ó¡¤¥Æ¥¹¥Èµ»½Ñ¤ò±þÍѤ·¤¿¿®ÍêÀ¡¤¥»¥¥å¥ê¥Æ¥£¸þ¾å¤Ø¤Î¼è¤êÁȤߤˤĤ¤¤Æ¾Ò²ð¤¹¤ë¡¥¤µ¤é¤Ë¡¤¥Ë¥å¡¼¥í¥â¥ë¥Õ¥£¥Ã¥¯¥³¥ó¥Ô¥å¡¼¥¿¤Ê¤É¼¡À¤Âå¥Ç¥Ð¥¤¥¹¤òÍѤ¤¤¿½¸ÀѲóÏ©¤Î¥Ç¥£¥Ú¥ó¥À¥Ó¥ê¥Æ¥£¤Ë´Ø¤¹¤ë²ÝÂê¤Ë¤â¿¨¤ì¤ë¡¥ |
Âê̾ | (¾·ÂÔ¹Ö±é) ¿À·ÐºÙ˦½¸ÃĤΥ¹¥Ñ¥¤¥¯¥Ç¡¼¥¿¤«¤é¤Î·ë¹ç¿äÄê |
Ãø¼Ô | ¡û³òÅç ¾Í²ð (ÅìµþÂç³Ø) |
¥Ú¡¼¥¸ | p. 107 |
¥¡¼¥ï¡¼¥É | ¥Ç¡¼¥¿¶îư²Ê³Ø, µÕÌäÂê, ·ë¹ç¿äÄê, ¾ðÊóÍýÏÀ, ·×»»Åý·×³Ø |
¥¢¥Ö¥¹¥È¥é¥¯¥È | ·×¬µ»½Ñ¤Îȯã¤òÇØ·Ê¤È¤·¤Æ¡¤Ê£»¨¤Ê¥·¥¹¥Æ¥à¤Î»ÅÁȤߤò´Ñ¬¤µ¤ì¤¿¥Ç¡¼¥¿¤Ë¤â¤È¤Å¤¤¤Æ²òÌÀ¤¹¤ë¥Ç¡¼¥¿¶îư²Ê³Ø¤¬ÃíÌܤµ¤ì¤Æ¤¤¤ë¡¥¥Ç¡¼¥¿¤«¤é¤½¤ì¤òÀ¸À®¤·¤¿Ê콸ÃĤÎÊ¿¶Ñ¤äʬ»¶¤Ê¤ÉÈæ³ÓŪñ½ã¤ÊÆÃħÎ̤ò¿ä¤·Î̤ëÊýË¡¤Ï¡¤¿äÄêÏÀ¤È¤·¤ÆÄ¹Ç¯Åý·×³Ø¤Ç¸¦µæ¤µ¤ì¤Æ¤¤¿¡¥¥Ç¡¼¥¿¶îư²Ê³Ø¤Î¿·¤·¤µ¤Ï¡¤¤³¤¦¤·¤¿µÕÌäÂêŪ¥¢¥×¥í¡¼¥Á¤ò¡¤¹â¼¡¸µ¥Ç¡¼¥¿¤òÍøÍѤ¹¤ë¤³¤È¤Ç¡¤¤è¤êÊ£»¨Å٤ι⤤»ÅÁȤߤβòÌÀ¤Ë¤Þ¤Ç¹¤²¤è¤¦¤È¤·¤Æ¤¤¤ë¤È¤³¤í¤Ë¤¢¤ë¡¥Ëֱܹé¤Ç¤Ï¡¤¤½¤Î°ìÎã¤È¤·¤Æ¡¤²æ¡¹¤¬¹Ô¤Ã¤¿¥Ç¡¼¥¿¤Ë¤â¤È¤Å¤¤¤Æ¡¤¿À·ÐºÙ˦½¸ÃĤËÂФ¹¤ë¥¹¥Ñ¥¤¥¯¤ÎƱ»þ·×¬¥Ç¡¼¥¿¤«¤é¿À·ÐºÙ˦´Ö¤Î·ë¹ç¤òµÕÌäÂêŪ¤Ë¿äÄꤹ¤ëÊýË¡¤ò¾Ò²ð¤¹¤ë¡¥ |
Âê̾ | ÆâÊýÀþÉÕ¤ÅÀ¾õ¥Ö¥í¥Ã¥¯Ç§¼±¤Ë¤ª¤±¤ë¥¢¥Î¥Æ¡¼¥·¥ç¥óÊýË¡¤Î¸¡Æ¤ |
Ãø¼Ô | ¡ýÁ°ÅÄ ¹À´õ, µÈÅÄ ¿ó (ÅìµþÅÔΩ»º¶Èµ»½Ñ¹âÅùÀìÌç³Ø¹») |
¥Ú¡¼¥¸ | pp. 108 - 110 |
¥¡¼¥ï¡¼¥É | ¥¢¥Î¥Æ¡¼¥·¥ç¥ó, ²èÁüǧ¼±, »ë³Ð¾ã¤¬¤¤¼Ô, ±Ø¥Û¡¼¥à, YOLOv3 |
¥¢¥Ö¥¹¥È¥é¥¯¥È | »ë³Ð¾ã¤¬¤¤¼Ô¤Î¿¤¯¤¬±Ø¤Î¥Û¡¼¥à¤«¤é¤ÎžÍî´íµ¡¤ò·Ð¸³¤·¤Æ¤¤¤ë¡¥¤³¤ì¤Þ¤Ç¤Ë¡¤²»À¼¤òÍѤ¤¤¿»Ù±ç¥·¥¹¥Æ¥à¤¬Ä󰯤µ¤ì¤Æ¤¤¤ë¤¬¡¤Áû²»¤Î±Æ¶Á¤ò¼õ¤±¤Æ¤·¤Þ¤¦¡¥²»¤ò»È¤ï¤Ê¤¤»Ù±ç¥·¥¹¥Æ¥à¤È¤·¤Æ¡¤¥Û¡¼¥àü¤ËÀßÃÖ¤µ¤ì¤Æ¤¤¤ëÆâÊýÀþÉÕ¤ÅÀ¾õ¥Ö¥í¥Ã¥¯¤ò²èÁüǧ¼±¤·¡¤¿¶Æ°Åù¤òÍøÍѤ·¤Æ»ë³Ð¾ã¤¬¤¤¼Ô¤ØÃΤ餻¤ëÊýË¡¤¬¹Í¤¨¤é¤ì¤ë¡¥¤·¤«¤·¡¤¼±ÊÌ´ï¤Î³Ø½¬»þ¤ËÆâÊýÀþÉÕ¤ÅÀ¾õ¥Ö¥í¥Ã¥¯¤ò¸Ä¡¹¤Ë¥¢¥Î¥Æ¡¼¥·¥ç¥ó¤¹¤ë¤È¡¤TPR¤¬Ä㤯¡¤FPR¤¬¹â¤¯¤Ê¤Ã¤Æ¤·¤Þ¤¦¡¥¤½¤³¤ÇËܹƤǤϡ¤3¼ïÎà¤Î¥¢¥Î¥Æ¡¼¥·¥ç¥óÊýË¡¤Ë¤Ä¤¤¤Æ¸¡Æ¤¤ò¹Ô¤¦¡¥TPR¸þ¾å¡¤FPRÍÞÀ©¤Î¤¿¤á¤Ë¤Ï¡¤¤½¤ì¤¾¤ì¡¤Ê£¿ô¤Î¥Ö¥í¥Ã¥¯¤ò¤Þ¤È¤á¤Æ¥¢¥Î¥Æ¡¼¥·¥ç¥ó¤¹¤ëÊýË¡¡¤ÆâÊýÀþÉÕ¤ÅÀ¾õ¥Ö¥í¥Ã¥¯¤Î²¼Éô¤ò¥¢¥Î¥Æ¡¼¥·¥ç¥ó¤¹¤ëÊýË¡¤¬Í¸ú¤Ç¤¢¤ë¤³¤È¤ò¼¨¤¹¡¥ |
Âê̾ | ¥é¥ó¥À¥à²½¤È¥Î¥¤¥º½üµî¤Ë¤è¤ëÊ£¹çŪ¤ÊAdversarial Examples¤ËÂФ¹¤ëËɱҼêË¡ |
Ãø¼Ô | ¡ý±§Ìî µ®»Î (¿®½£Âç³ØÂç³Ø±¡ Áí¹çÍý¹©³Ø¸¦µæ²Ê), ´Ý»³ Ì, µÜÈø ½¨½Ó (¿®½£Âç³Ø ¹©³ØÉô) |
¥Ú¡¼¥¸ | pp. 111 - 115 |
¥¡¼¥ï¡¼¥É | ¿¼Áسؽ¬, ¥»¥¥å¥ê¥Æ¥£, ²èÁüǧ¼±, Adversarial Examples, ŨÂÐŪ¤ÊÎã |
¥¢¥Ö¥¹¥È¥é¥¯¥È | ¿¼Áسؽ¬¤ÏȯŸ¤ò¿ë¤²¡¢Å¬±þÎΰè¤ò¹¤²Â³¤±¤Æ¤¤¤ë¡£¤·¤«¤·¡¢¿¼Áسؽ¬¤Ë¤è¤Ã¤Æ¹½ÃÛ¤µ¤ì¤¿¼±ÊÌ´ï¤ÈÀµ¤·¤¯¼±Ê̲Äǽ¤ÊÆþÎÏ¿®¹æ¤«¤é¡¢×ó°ÕŪ¤Ë¸íǧ¼±¤òȯÀ¸¤µ¤»¤ëÀÝÆ°(¿Í´Ö¤Î´¶³Ð´ï´±¤¬ÃγФǤ¤Ê¤¤¤Û¤ÉÈùºÙ¤Ê¿®¹æ)¤¬·×»»²Äǽ¤Ç¤¢¤ë¤³¤È¤¬¼¨¤µ¤ì¤Æ¤¤¤ë¡£ÆÃ¤ËËÜÍè¤ÎÆþÎÏ¿®¹æ¤ÈÀÝÆ°¤ò½Å¤Í¹ç¤ï¤»¤¿¤â¤Î¤òAdversarial Examples(Advx)¤È¸Æ¤Ö¡£Advx¤Ï¿¼Áسؽ¬¤Ë¤ª¤¤¤Æ¡¢¥¤¥ó¥·¥Ç¥ó¥È¤òȯÀ¸¤µ¤»¤ë´í¸±À¤òÆâÊñ¤·¤¿ÀȼåÀ¤Ç¤¢¤ê¡¢ËɱҼêË¡¤¬µá¤á¤é¤ì¤Æ¤¤¤ë¡£ËÜÏÀʸ¤Ç¤Ï¥é¥ó¥À¥à²½¤È¥Î¥¤¥º½üµî¤òÊ£¹çŪ¤ËÍѤ¤¤¿ËɱҼêË¡¤ÎÄ󰯤ò¹Ô¤¦¡£ |
Âê̾ | ³°ÉôÃ챤òÍøÍѤ·¤¿ÂÐÏÃ¥·¥¹¥Æ¥à¤ÎÀºÅÙ¸þ¾å¤Ë¤Ä¤¤¤Æ |
Ãø¼Ô | ¡ýÀÐÁÒ ³Ù, ´Ý»³ Ì, µÜÈø ½¨½Ó (¿®½£Âç³Ø ¹©³ØÉô ÅŻҾðÊó¥·¥¹¥Æ¥à¹©³Ø²Ê) |
¥Ú¡¼¥¸ | pp. 116 - 120 |
¥¡¼¥ï¡¼¥É | ¿¼Áسؽ¬, ÂÐÏÃ¥·¥¹¥Æ¥à, ¼«Á³¸À¸ì½èÍý, µ¡³£³Ø½¬, À¸À®¥â¥Ç¥ë |
¥¢¥Ö¥¹¥È¥é¥¯¥È | ¶áǯ,³°ÉôÃ챤òÍøÍѤ¹¤ëÂÐÏÃÀ¸À®¥â¥Ç¥ë¤¬ÃíÌܤò½¸¤á¤Æ¤¤¤ë. ¤½¤Î¤è¤¦¤Ê¥â¥Ç¥ë¤ÏTransformer¤¬´ðËܹ½Â¤¤È¤·¤ÆÍѤ¤¤é¤ì¤Æ¤¤¤ë¡¥ Ëܸ¦µæ¤Ç¤Ï¤Þ¤ºTransformer¤òTransformer°Ê¾å¤ÎÀºÅÙ¤ò¤â¤¿¤é¤¹¤³¤È¤¬Êó¹ð¤µ¤ì¤Æ¤¤¤ëUniversal Transformer(°Ê²¼UT¤Èάµ¤¹¤ë) ¤ËÃÖ¤´¹¤¨¤¿¾ì¹ç¤ÎÀÇ½Èæ³Ó¤ò¹Ô¤¤¡¤UT¤ÎÂÐÏÃÀ¸À®¥â¥Ç¥ë¤Ë¤ª¤±¤ëǽÎϤò¸¡¾Ú¤¹¤ë¡¥ ¤Þ¤¿¡¤UT¤òÍѤ¤¤ë¤³¤È¤Ë¤è¤ê,Transformer¤ÎÁØ¿ôõº÷¥³¥¹¥È¤òºï¸º¤Ç¤¤ë²ÄǽÀ¤Ë¤Ä¤¤¤Æ¸¡Æ¤¤¹¤ë¡¥ |
Âê̾ | ·èÄêÌڤ˴ð¤Å¤¯¥Ð¥¤¥Ê¥ê¥Ë¥å¡¼¥é¥ë¥Í¥Ã¥È¥ï¡¼¥¯¤Î¶á»÷·×»»¤Ë´Ø¤¹¤ë°ì¸¡Æ¤ |
Ãø¼Ô | ¡ýëÅÄÉô ¾¢, °ëÉô Ãè, ÉÙ²¬ Íΰì, ã·Æ£ ´² (²ñÄÅÂç³Ø) |
¥Ú¡¼¥¸ | pp. 121 - 123 |
¥¡¼¥ï¡¼¥É | ¿¼Áسؽ¬, ¥Ë¥å¡¼¥é¥ë¥Í¥Ã¥È¥ï¡¼¥¯, ·èÄêÌÚ, ¶á»÷·×»» |
¥¢¥Ö¥¹¥È¥é¥¯¥È | ¥Ç¡¼¥¿¤Î¼«Æ°²òÀϤˤè¤ë¥Í¥Ã¥È¥ï¡¼¥¯Éé²Ù¤Îºï¸º¤äÄãÃÙ±ä½èÍý¤Î¼Â¸½¤Î¤¿¤á¤Ë¡¤·×»»»ñ¸»¤È¾ÃÈñÅÅÎϤ˸·¤·¤¤À©Ì󤬤¢¤ë¥¨¥Ã¥¸¥Ç¥Ð¥¤¥¹¤Ç¤â¡¤¾ö¤ß¹þ¤ß¥Ë¥å¡¼¥é¥ë¥Í¥Ã¥È¥ï¡¼¥¯¤òÍѤ¤¤¿²èÁüǧ¼±µ»½Ñ¤ò³èÍѤ¹¤ë¤³¤È¤¬´üÂÔ¤µ¤ì¤ë¡¥¤½¤³¤Ç²æ¡¹¤Ï¿äÏÀ¤ËÍפ¹¤ë·×»»Î̤κ︺¤Î¤¿¤á¤Ë¡¤¾ö¤ß¹þ¤ßÁØ¡¤¥Ð¥Ã¥ÁÀµµ¬²½ÁØ¡¤³èÀ²½ÁØ¡¤¥×¡¼¥ê¥ó¥°ÁؤȤ¤¤Ã¤¿°ìÏ¢¤Î·×»»¤ò·èÄêÌڤˤè¤ê¶á»÷¤¹¤ë¤³¤È¤òÌܻؤ·¤Æ¤¤¤ë¡¥ËܹƤǤϴðÁø¡Æ¤¤È¤·¤Æ¡¢¥Ð¥¤¥Ê¥ê¥Ë¥å¡¼¥é¥ë¥Í¥Ã¥È¥ï¡¼¥¯¤òÂоݤȤ·¡¤·èÄêÌڤˤè¤ë¶á»÷·×»»¤Ë¤è¤ë·×»»Î̺︺¸ú²Ì¤ÈÀºÅÙɾ²Á¤Ë¤Ä¤¤¤ÆÊó¹ð¤¹¤ë¡¥ |
Âê̾ | ÆâÊýÀþÉÕ¤ÅÀ¾õ¥Ö¥í¥Ã¥¯Ç§¼±¤Ë¤ª¤±¤ë¥¢¥Î¥Æ¡¼¥·¥ç¥óÊýË¡¤Î¸¡Æ¤ |
Ãø¼Ô | ¡ýÁ°ÅÄ ¹À´õ, µÈÅÄ ¿ó (ÅìµþÅÔΩ»º¶Èµ»½Ñ¹âÅùÀìÌç³Ø¹») |
¥¡¼¥ï¡¼¥É | ¥¢¥Î¥Æ¡¼¥·¥ç¥ó, ²èÁüǧ¼±, »ë³Ð¾ã¤¬¤¤¼Ô, ±Ø¥Û¡¼¥à, YOLOv3 |
¥¢¥Ö¥¹¥È¥é¥¯¥È | »ë³Ð¾ã¤¬¤¤¼Ô¤Î¿¤¯¤¬±Ø¤Î¥Û¡¼¥à¤«¤é¤ÎžÍî´íµ¡¤ò·Ð¸³¤·¤Æ¤¤¤ë¡¥¤³¤ì¤Þ¤Ç¤Ë¡¤²»À¼¤òÍѤ¤¤¿»Ù±ç¥·¥¹¥Æ¥à¤¬Ä󰯤µ¤ì¤Æ¤¤¤ë¤¬¡¤Áû²»¤Î±Æ¶Á¤ò¼õ¤±¤Æ¤·¤Þ¤¦¡¥²»¤ò»È¤ï¤Ê¤¤»Ù±ç¥·¥¹¥Æ¥à¤È¤·¤Æ¡¤¥Û¡¼¥àü¤ËÀßÃÖ¤µ¤ì¤Æ¤¤¤ëÆâÊýÀþÉÕ¤ÅÀ¾õ¥Ö¥í¥Ã¥¯¤ò²èÁüǧ¼±¤·¡¤¿¶Æ°Åù¤òÍøÍѤ·¤Æ»ë³Ð¾ã¤¬¤¤¼Ô¤ØÃΤ餻¤ëÊýË¡¤¬¹Í¤¨¤é¤ì¤ë¡¥¤·¤«¤·¡¤¼±ÊÌ´ï¤Î³Ø½¬»þ¤ËÆâÊýÀþÉÕ¤ÅÀ¾õ¥Ö¥í¥Ã¥¯¤ò¸Ä¡¹¤Ë¥¢¥Î¥Æ¡¼¥·¥ç¥ó¤¹¤ë¤È¡¤TPR¤¬Ä㤯¡¤FPR¤¬¹â¤¯¤Ê¤Ã¤Æ¤·¤Þ¤¦¡¥¤½¤³¤ÇËܹƤǤϡ¤3¼ïÎà¤Î¥¢¥Î¥Æ¡¼¥·¥ç¥óÊýË¡¤Ë¤Ä¤¤¤Æ¸¡Æ¤¤ò¹Ô¤¦¡¥TPR¸þ¾å¡¤FPRÍÞÀ©¤Î¤¿¤á¤Ë¤Ï¡¤¤½¤ì¤¾¤ì¡¤Ê£¿ô¤Î¥Ö¥í¥Ã¥¯¤ò¤Þ¤È¤á¤Æ¥¢¥Î¥Æ¡¼¥·¥ç¥ó¤¹¤ëÊýË¡¡¤ÆâÊýÀþÉÕ¤ÅÀ¾õ¥Ö¥í¥Ã¥¯¤Î²¼Éô¤ò¥¢¥Î¥Æ¡¼¥·¥ç¥ó¤¹¤ëÊýË¡¤¬Í¸ú¤Ç¤¢¤ë¤³¤È¤ò¼¨¤¹¡¥ |
¢ªËÜÏÀʸ¤Î¼Â¥Ç¡¼¥¿ |
Âê̾ | ¥é¥ó¥À¥à²½¤È¥Î¥¤¥º½üµî¤Ë¤è¤ëÊ£¹çŪ¤ÊAdversarial Examples¤ËÂФ¹¤ëËɱҼêË¡ |
Ãø¼Ô | ¡ý±§Ìî µ®»Î (¿®½£Âç³ØÂç³Ø±¡ Áí¹çÍý¹©³Ø¸¦µæ²Ê), ´Ý»³ Ì, µÜÈø ½¨½Ó (¿®½£Âç³Ø ¹©³ØÉô) |
¥¡¼¥ï¡¼¥É | ¿¼Áسؽ¬, ¥»¥¥å¥ê¥Æ¥£, ²èÁüǧ¼±, Adversarial Examples, ŨÂÐŪ¤ÊÎã |
¥¢¥Ö¥¹¥È¥é¥¯¥È | ¿¼Áسؽ¬¤ÏȯŸ¤ò¿ë¤²¡¢Å¬±þÎΰè¤ò¹¤²Â³¤±¤Æ¤¤¤ë¡£¤·¤«¤·¡¢¿¼Áسؽ¬¤Ë¤è¤Ã¤Æ¹½ÃÛ¤µ¤ì¤¿¼±ÊÌ´ï¤ÈÀµ¤·¤¯¼±Ê̲Äǽ¤ÊÆþÎÏ¿®¹æ¤«¤é¡¢×ó°ÕŪ¤Ë¸íǧ¼±¤òȯÀ¸¤µ¤»¤ëÀÝÆ°(¿Í´Ö¤Î´¶³Ð´ï´±¤¬ÃγФǤ¤Ê¤¤¤Û¤ÉÈùºÙ¤Ê¿®¹æ)¤¬·×»»²Äǽ¤Ç¤¢¤ë¤³¤È¤¬¼¨¤µ¤ì¤Æ¤¤¤ë¡£ÆÃ¤ËËÜÍè¤ÎÆþÎÏ¿®¹æ¤ÈÀÝÆ°¤ò½Å¤Í¹ç¤ï¤»¤¿¤â¤Î¤òAdversarial Examples(Advx)¤È¸Æ¤Ö¡£Advx¤Ï¿¼Áسؽ¬¤Ë¤ª¤¤¤Æ¡¢¥¤¥ó¥·¥Ç¥ó¥È¤òȯÀ¸¤µ¤»¤ë´í¸±À¤òÆâÊñ¤·¤¿ÀȼåÀ¤Ç¤¢¤ê¡¢ËɱҼêË¡¤¬µá¤á¤é¤ì¤Æ¤¤¤ë¡£ËÜÏÀʸ¤Ç¤Ï¥é¥ó¥À¥à²½¤È¥Î¥¤¥º½üµî¤òÊ£¹çŪ¤ËÍѤ¤¤¿ËɱҼêË¡¤ÎÄ󰯤ò¹Ô¤¦¡£ |
¢ªËÜÏÀʸ¤Î¼Â¥Ç¡¼¥¿ |
Âê̾ | ³°ÉôÃ챤òÍøÍѤ·¤¿ÂÐÏÃ¥·¥¹¥Æ¥à¤ÎÀºÅÙ¸þ¾å¤Ë¤Ä¤¤¤Æ |
Ãø¼Ô | ¡ýÀÐÁÒ ³Ù, ´Ý»³ Ì, µÜÈø ½¨½Ó (¿®½£Âç³Ø ¹©³ØÉô ÅŻҾðÊó¥·¥¹¥Æ¥à¹©³Ø²Ê) |
¥¡¼¥ï¡¼¥É | ¿¼Áسؽ¬, ÂÐÏÃ¥·¥¹¥Æ¥à, ¼«Á³¸À¸ì½èÍý, µ¡³£³Ø½¬, À¸À®¥â¥Ç¥ë |
¥¢¥Ö¥¹¥È¥é¥¯¥È | ¶áǯ,³°ÉôÃ챤òÍøÍѤ¹¤ëÂÐÏÃÀ¸À®¥â¥Ç¥ë¤¬ÃíÌܤò½¸¤á¤Æ¤¤¤ë. ¤½¤Î¤è¤¦¤Ê¥â¥Ç¥ë¤ÏTransformer¤¬´ðËܹ½Â¤¤È¤·¤ÆÍѤ¤¤é¤ì¤Æ¤¤¤ë¡¥ Ëܸ¦µæ¤Ç¤Ï¤Þ¤ºTransformer¤òTransformer°Ê¾å¤ÎÀºÅÙ¤ò¤â¤¿¤é¤¹¤³¤È¤¬Êó¹ð¤µ¤ì¤Æ¤¤¤ëUniversal Transformer(°Ê²¼UT¤Èάµ¤¹¤ë) ¤ËÃÖ¤´¹¤¨¤¿¾ì¹ç¤ÎÀÇ½Èæ³Ó¤ò¹Ô¤¤¡¤UT¤ÎÂÐÏÃÀ¸À®¥â¥Ç¥ë¤Ë¤ª¤±¤ëǽÎϤò¸¡¾Ú¤¹¤ë¡¥ ¤Þ¤¿¡¤UT¤òÍѤ¤¤ë¤³¤È¤Ë¤è¤ê,Transformer¤ÎÁØ¿ôõº÷¥³¥¹¥È¤òºï¸º¤Ç¤¤ë²ÄǽÀ¤Ë¤Ä¤¤¤Æ¸¡Æ¤¤¹¤ë¡¥ |
¢ªËÜÏÀʸ¤Î¼Â¥Ç¡¼¥¿ |
Âê̾ | ·èÄêÌڤ˴ð¤Å¤¯¥Ð¥¤¥Ê¥ê¥Ë¥å¡¼¥é¥ë¥Í¥Ã¥È¥ï¡¼¥¯¤Î¶á»÷·×»»¤Ë´Ø¤¹¤ë°ì¸¡Æ¤ |
Ãø¼Ô | ¡ýëÅÄÉô ¾¢, °ëÉô Ãè, ÉÙ²¬ Íΰì, ã·Æ£ ´² (²ñÄÅÂç³Ø) |
¥¡¼¥ï¡¼¥É | ¿¼Áسؽ¬, ¥Ë¥å¡¼¥é¥ë¥Í¥Ã¥È¥ï¡¼¥¯, ·èÄêÌÚ, ¶á»÷·×»» |
¥¢¥Ö¥¹¥È¥é¥¯¥È | ¥Ç¡¼¥¿¤Î¼«Æ°²òÀϤˤè¤ë¥Í¥Ã¥È¥ï¡¼¥¯Éé²Ù¤Îºï¸º¤äÄãÃÙ±ä½èÍý¤Î¼Â¸½¤Î¤¿¤á¤Ë¡¤·×»»»ñ¸»¤È¾ÃÈñÅÅÎϤ˸·¤·¤¤À©Ì󤬤¢¤ë¥¨¥Ã¥¸¥Ç¥Ð¥¤¥¹¤Ç¤â¡¤¾ö¤ß¹þ¤ß¥Ë¥å¡¼¥é¥ë¥Í¥Ã¥È¥ï¡¼¥¯¤òÍѤ¤¤¿²èÁüǧ¼±µ»½Ñ¤ò³èÍѤ¹¤ë¤³¤È¤¬´üÂÔ¤µ¤ì¤ë¡¥¤½¤³¤Ç²æ¡¹¤Ï¿äÏÀ¤ËÍפ¹¤ë·×»»Î̤κ︺¤Î¤¿¤á¤Ë¡¤¾ö¤ß¹þ¤ßÁØ¡¤¥Ð¥Ã¥ÁÀµµ¬²½ÁØ¡¤³èÀ²½ÁØ¡¤¥×¡¼¥ê¥ó¥°ÁؤȤ¤¤Ã¤¿°ìÏ¢¤Î·×»»¤ò·èÄêÌڤˤè¤ê¶á»÷¤¹¤ë¤³¤È¤òÌܻؤ·¤Æ¤¤¤ë¡¥ËܹƤǤϴðÁø¡Æ¤¤È¤·¤Æ¡¢¥Ð¥¤¥Ê¥ê¥Ë¥å¡¼¥é¥ë¥Í¥Ã¥È¥ï¡¼¥¯¤òÂоݤȤ·¡¤·èÄêÌڤˤè¤ë¶á»÷·×»»¤Ë¤è¤ë·×»»Î̺︺¸ú²Ì¤ÈÀºÅÙɾ²Á¤Ë¤Ä¤¤¤ÆÊó¹ð¤¹¤ë¡¥ |
¢ªËÜÏÀʸ¤Î¼Â¥Ç¡¼¥¿ |
Âê̾ | (ÆÃÊ̾·ÂÔ¹Ö±é) ÆüËÜȯ¤Î̱´Ö±§Ãè¥í¥±¥Ã¥È¤Ë»È¤ï¤ì¤Æ¤¤¤ëÁȤ߹þ¤ß¥Ï¡¼¥É¥¦¥§¥¢ |
Ãø¼Ô | ¡û¿¹²¬ À¡É× (¥¤¥ó¥¿¡¼¥¹¥Æ¥é¥Æ¥¯¥Î¥í¥¸¥º³ô¼°²ñ¼Ò) |
¥Ú¡¼¥¸ | pp. 124 - 126 |
¥¡¼¥ï¡¼¥É | ±§Ã賫ȯ, NewSpace, ÁȤ߹þ¤ßµ»½Ñ, ÉʼÁÊݾÚ, ¥¹¥Ô¥ó¥¤¥ó |
¥¢¥Ö¥¹¥È¥é¥¯¥È | À¤³¦¤Î±§Ã賫ȯ¤Ë¤ª¤¤¤Æ¸½ºß¡¤Ì±´Ö¼çƳ¤Ë¤è¤ë¥í¥±¥Ã¥È¤ä¿Í¹©±ÒÀ±¤Î³«È¯¤¬³èȯ²½¤·¤Æ¤ª¤ê¡¤¤³¤Î¥È¥ì¥ó¥É¤ÏNewSpace¤È¸Æ¤Ð¤ì¤ë¡¥Ì±´Ö±§Ã賫ȯ¤¬²Äǽ¤Ë¤Ê¤Ã¤¿¤Î¤Ï¡¤¥×¥í¥»¥Ã¥µ¤äMEMS¥»¥ó¥µ¤Ê¤ÉÁȤ߹þ¤ß¥Ï¡¼¥É¥¦¥§¥¢ÉôÉʤ¬·àŪ¤Ë¹â¿®Íê²½¡¦¹âÀǽ²½¡¦Äã²Á³Ê²½¡¦¾®·¿·ÚÎ̲½¤·¡¤ÅÅ»ÒÁõÃÖ¤ËÂФ¹¤ëÆÃ¼ì¤ÊÉʼÁ¡¦¿®ÍêÀÊݾںî¶È¤¬ÉÔÍפȤʤꡤµ¡ÂβÁ³Ê¤ò³ÊÃʤËÍÞ¤¨¤é¤ì¤ë¤è¤¦¤Ë¤Ê¤Ã¤¿¤¿¤á¤Ç¤¢¤ë¡¥½¾Íè¤È¤ÏµÕ¤Ë¡¤±§Ãè°Ê³°¤ÎʬÌ¤é±§ÃèʬÌî¤Øµ»½ÑƳÆþ¤ò¹Ô¤¦¥¹¥Ô¥ó¥ª¥ó¤Îŵ·¿Îã¤Ç¤¢¤ê¡¤Ã±¤ËÉôÉʤΤߤʤ餺³«È¯¼êË¡¤Ê¤É¤â¼è¤êÆþ¤ì¤¬¿Ê¤ó¤Ç¤¤¤ë¡¥Ëֱܹé¤Ç¤Ï¡¤¤³¤Î¤è¤¦¤Ê±§ÃèʬÌî¤Ç¤Î¥È¥ì¥ó¥ÉÊѲ½¤Ë¤Ä¤¤¤Æ¾Ò²ð¤¹¤ë¡¥ |