## QUALIFYING CHARACTERISTICS OF LINK SHUTDOWN METHOD

WTC 2012 Conference
4-7 March 2012
Miyazaki, JAPAN

> Simon Tembo, and Ken-ichi Yukimatsu
> Department of Computer Science and Engineering, Graduate School of Engineering and Resource Science, AKITA UNIVERSITY

Shohei Kamamura, Takashi Miyamura and Kohei Shiomoto NTT Network Service Systems Laboratories, NTT CORPORATION

## INTRODUCTION Cause of IP Network Failures

$\square$ Shutting down a link due to routine maintenance is considered as a planned network failure.

## Cause of PNetwork Failures


$\square$ Currently, ISPs use a graceful link shutdown method by first setting up the Interior Gateway Protocol (IGP) link metric to MAX_METRIC - 1 and then shutdown the link.
$\square$ The link metric of a link can be increased to a larger metric by progressively increasing the metric of a link by 1 , until the target metric is reached $\Rightarrow m_{1}=m_{0}+1$

* such that it cannot carry traffic anymore at which point the link can then be safely shutdown.
$\square$ We present that a Pythagorean
Triple Metric Sequence can be used to shutdown a link during routine maintenance.

Using Pythagorean Triple Properties to Compute MAX_METRIC 1

1. Using Euclid Formula:

* Pythagorean triples from any two positive integers $m$ and $n ; m>n$.
* In terms of sequence we have: $\{a, b, c\}$
$\Rightarrow\left\{a=m^{2}-n^{2}, b=2 m n, c=m^{2}+n^{2}\right\}$

* If $n=1$, the triples are
$\Rightarrow\left\{a=m^{2}-1, b=2 m, c=m^{2}+1\right\} \quad a=m^{2}-n^{2}=256^{2}-1=65,535$
* Graceful Link Shutdown $b=2 m n=512$ Method: MAX_METRIC-1
> Where $m=256$; $n=1$

$$
c=m^{2}+n^{2}=256^{2}+1=65,537
$$

$$
\Rightarrow a=M A X \_M E T R I C-1=2^{16}-1=256^{2}-1=65,535
$$

Using Pythagorean Triple Properties and Genealogical Tree to Compute Pythagorean Triple Metric Sequence - Starting from \{3,4,5\}


## Using the Pythagorean Triple Metric Sequence Method we Compute Target Metrics for Link Shutdown

If $\{a, b, c\}$ is a Pythagorean triple, so is $\{k a, k b, k c\}$ for any positive integer $k$, and that the smallest Pythagorean Triple is $\{3,4,5\}$ when $k=1$.
The $\{3,4,5\}$ triple and its multiples $\{3 n, 4 n, 5 n\}$ are the only Pythagorean triple that are in arithmetic progression and consecutively incrementing.
We use the Pythagorean Triple Sequence $\{3 n, 4 n, 5 n\}$ to determine a sequence of link metrics as target metrics to use to shut down a link.

| n | PRIMITIVE | TARGET METRIC |
| :--- | :--- | :--- |
| 1 | $1 \times 3,4,5$ | $3,4,5$ |
| 2 | $2 \times 3,4,5$ | $6,8,10$ |
| 3 | $3 \times 3,4,5$ | $9,12,15$ |
| 4 | $4 \times 3,4,5$ | $12,16,20$ |
| 5 | $5 \times 3,4,5$ | $15,20,25$ |
| $\ldots$ | $\ldots$ | $\ldots$ |
| n | $\mathrm{n} \times 3,4,5$ | $3 \mathrm{n}, 4 \mathrm{n}, 5 \mathrm{n}$ |



Result of using Pythagorean Triple to Shut Down a Link

$\square$ When we shutdown links 1-2/2-1 traffic destined for node 2 routing is:


Result of using Pythagorean Triple to Shut Down Two Links

-We are also able to shutdown two links (e.g. 1-2/2-1 and 1-4/4-1) using our Method.


Links that can be shut down when link cost reaches the link metric of $\{3 n, 4 n, 5 n\}$


DDuring our experiments each link was configured to $\{n, 2 n, 3 n, 4 n, 5 n\}$ link metric;

DSome links it is only when the link metric reached $\{3 n, 4 n, 5 n\}$ that the link utilization was zero.

Links that can be shut down ONLY when link cost reaches the link metric of $\{4 n, 5 n\}$

-Whereas other links it is only when the link metric reached $\{4 n, 5 n\}$ that the link utilization became zero.

## Our Simulation Results in Summary \& Conclusion

$\square 50 \%$ of the links were shutdown when link cost reached the link metric of $\{3 n, 4 n, 5 n\}$
$\square 50 \%$ of the links were shutdown ONLY when link metrict reached the link metric of $\{4 n, 5 n\}$


We have presented a link shutdown method using the Pythagorean Triple Metric Sequence that can be used to configure and shutdown a link for routine maintenance.
Thus when a link is scheduled for routine maintenance the link can be configured to one of the metric in the sequence $\{3 n, 4 n, 5 n\}$ as the target metric before shutdown.
Future work, we plan to investigate the use of other Pythagorean Triple Sequences other than the $\{3 n, 4 n, 5 n\}$.

