
Software Defined Networking is an
Architecture Not a Protocol

David Meyer
World Telecommunications Congress 2012

March 04 – 07, 2012
Miyazaki, Japan

dmm@cisco.com

Agenda

• Software Defined Networking (SDN)
– A Bit of History and How we got here
– OpenFlow and SDN

• Current SDN Thinking

• Where we’re going: The Programmable Network

• Q&A

In The Beginning
(Martin, Nick, and a cast of many)

A Little Later…OpenFlow
(again, with a cast of 2^10s)

Switch Model

OpenFlow Switch, v 1.0

Switch
Port

MAC
src

MAC
dst

Eth
type

VLAN
ID

IP
Src

IP
Dst

IP
Prot

TCP
sport

TCP
dport

Rule Action Stats

1. Forward packet to port(s)
2. Encapsulate and forward to controller
3. Drop packet
4. Send to normal processing pipeline

+ mask

Packet + byte counters

Flow Table

This was one of the earliest SDN architectures to use OpenFlow
(note flow based, separation of control and data planes)

OpenFlow Switch Specification Version 1.1.0 Implemented

In
g
re

ss
P

o
rt

M
et

a
d
a
ta

E
th

er
sr

c

E
th

er
d
st

E
th

er
ty

p
e

V
L

A
N

id

V
L

A
N

p
ri

o
ri

ty

M
P

L
S

la
b

el

M
P

L
S

tr
a
ff
ic

cl
a
ss

IP
v
4

sr
c

IP
v
4

d
st

IP
v
4

p
ro

to
/

A
R

P
o
p

co
d
e

IP
v
4

T
o
S

b
it

s

T
C

P
/

U
D

P
/

S
C

T
P

sr
c

p
o
rt

IC
M

P
T

y
p

e

T
C

P
/

U
D

P
/

S
C

T
P

d
st

p
o
rt

IC
M

P
C

o
d
e

Table 3: F ields from packets used to match against flow entries.

4.4 M atch ing

Packet In

Start at table 0

Match in

table n?

Based on table configuration, do one:

 • send to controller

 • drop

 • continue to next table

Update counters

Execute instructions:
 • update action set

 • update packet/match set fi elds

 • update metadata

Goto-

Table n?

Execute action

set

Yes

Yes

No No

Figure 3: F lowchart detailing packet flow through an OpenFlow switch.

On receipt of a packet, an OpenFlow Switch performs the functions shown in Figure 3. The switch
starts by performing a table lookup in the fi rst flow table, and, based on pipeline processing, may perform
table lookup in other flow tables (see 4.1.1) . M atch fields used for table lookups depend on the packet type
as in F igure 4.

A packet matches a flow table entry if the values in the match fields used for the lookup (as defined
in Figure 4) match those defined in the flow table. I f a flow table field has a value of ANY , it matches all
possible values in the header.

To handle the various Ethernet framing types, matching the Ethernet type is handled based on the
packet frame content. In general, the Ethernet type matched by OpenFlow is the one describing what is
considered by OpenFlow as the payload of the packet. I f the packet has VLAN tags, the Ethernet type
matched is the one found after all the VLAN tags. An exception to that rule is packets with M PLS tags
where OpenFlow can not determine the Ethernet type of the M PLS payload of the packet.

I f the packet is an Ethernet I I frame, the Ethernet type of the Ethernet header (after all VLAN
tags) is matched against the flow’s Ethernet type. I f the packet is an 802.3 frame with a 802.2 LLC
header, a SNAP header and Organizationally Unique Identifier (OUI) of 0x000000, the SNAP protocol id is
matched against the flow’s Ethernet type. A flow entry that specifies an Ethernet type of 0x05FF, matches
all 802.3 frames without a SNAP header and those with SNAP headers that do not have an OUI of 0x000000.

8

Header Fields for Matching (v.1.1)

Note that by matching across the full header space, OpenFlow effectively “de-layers”
the protocol stack

OpenFlow Switch Specification Version 1.1.0 Implemented

Table

0

Table

1

Table

n

Packet Execute

Action
Set

Packet
In

Action

SetAction

Set = {}

OpenFlow Switch

Packet
Out...

Ingress

port

Packet +

ingress port +

metadata

Action

Set

(a) Packets are matched against multiple tables in the pipeline

Match fields:
Ingress port +

metadata +

pkt hdrs

Action set

Flow
Table

 Find h ig hest-p riority m atch ing fl ow entry

 App ly instructions:
 i . Mod ify packet & update m atch fi elds
 (app ly actions instruction)
 ii . Update action set (clear actions and/or
 write actions instructions)
 i i i . Update m etadata

 Send m atch data and action set to

 nex t tab le

Action set

Match fields:
Ingress port +

metadata +

pkt hdrs

(b) Per-table packet processing

Figure 2: Packet flow through the processing pipeline

The flow tables of an OpenFlow switch are sequentially numbered, starting at 0. Pipeline processing
always starts at the fi rst flow table: the packet is fi rst matched against entries of flow table 0. Other flow
tables may be used depending on the outcome of the match in the fi rst table.

I f the packet matches a flow entry in a flow table, the corresponding instruction set is executed (see
4.4) . The instructions in the flow entry may explicitly direct the packet to another flow table (using the
Goto Instruction, see 4.6) , where the same process is repeated again. A flow entry can only direct a packet
to a flow table number which is greater than its own flow table number, in other words pipeline processing
can only go forward and not backward. Obviously, the flow entries of the last table of the pipeline can
not include the Goto instruction. I f the matching flow entry does not direct packets to another flow table,
pipeline processing stops at this table. W hen pipeline processing stops, the packet is processed with its
associated action set and usually forwarded (see 4.7) .

I f the packet does not match a flow entry in a flow table, this is a table miss. The behavior on ta-
ble miss depends on the table configuration; the default is to send packets to the controller over the control
channel via a packet-in message (see 5.1.2) , another options is to drop the packet. A table can also specify
that on a table miss the packet processing should continue; in this case the packet is processed by the next
sequentially numbered table.

6

OpenFlow Version 1.X, X > 0

{Any,Multi}cast (1.1)
ECMP (1.1)
MPLS (1.1, note push/pop, .1q)
IPv6 (1.2)

1.3 features being currently being considered
 -- tunnels, tags {en,de}caps, meters,…
Configuration Protocol under co-development

So What Is OpenFlow Then?

• A Switch Model
– Match-Action Tables (MAT)
– Per-flow counters

• An Application Layer Protocol
– Binary wire protocol, messages and state machine

that allow programming of the MAT

• A Transport Protocol
– TLS, TCP, ..

• Note that OF says nothing said about how a

given forwarding target implements the switch
model  OF is an Abstract Switch Model

Early SDN Architecture

 Well-defined open API

App

Packet Forwarding
Hardware

Packet Forwarding
Hardware

Packet Forwarding
Hardware

App App

Packet Forwarding
Hardware

Packet Forwarding
Hardware

Controller

 Open interface to hardware (OF)

Slide courtesy Nick Mckeown

Programmable Control Plane

“Modern” OF/SDN Architecture

Device
Capabilities

Applications built using Application Frameworks:
Hadoop, OpenMPI, Memcached, Dryad, Globus, etc.

Business Requirements and Use Cases:
Search, Social Networks, Cloud Computing, Web, Finance, etc.

Physical
Hardware

Global Management Abstraction

Control Logic

Abstract Network
Service Model

Global Network View
(Graph)

Network View Abstraction

Forwarding and
Device State Model Forwarding Interface Abstraction (DIR)

Application
Programs

Nypervisor

NOS

SDN
Components

(Network Hypervisor)

Device
Config

And
State

Model

DIR/HAL

(Network Operating System)

Cut Another Way:
Control Plane Distribution Options

Logically Centralized
(“servers”)

Fully distributed
(“on box”)

Vertically
integrated

(classic Router/
Switch Model)

Hybrid

(evolving model
in ONF)

Decoupled

(original
OpenFlow model)

Control plane function Data plane Legend:

Data Path jointly controlled by
standard on-box control plane and

centralized off-box controller

 Slide courtesy Frank Brockners

Nothing New Under The Sun…

• Much of the motivation for this generation’s foray into SDN was
grounded in the research community’s desire to be able to experiment
with new control paradigms.

• I call it “this generation’s foray” because the basic idea, separation of

control and data planes, is not new. Examples include:
– Ipsilon Flow Switching

• Centralized flow based control, ATM link layer
• GSMP (RFC 3292)

– AT&T SDN
• Centralized control and provisioning of SDH/TDM networks

– A similar thing happened in TDM voice to VOIP transition
• Softswitch  Controller
• Media gateway  Switch
• H.248  Device interface

– ForCES
• Separation of control and data planes
• RFC 3746 (and many others)

Great Diversity In
Thinking/Implementation

• Research
– RYU

• NTT
• http://www.osrg.net/ryu

– NOX
• A first generation open source controller
• http://noxrepo.org/doc/nox-ccr-final.pdf

– POX
• “NOX in python”

– Trema
• Ruby/C controller
• http://trema.github.com/trema/

– Floodlight
• Java based OF controller
• http://floodlight.openflowhub.org/

– SNAC
• Simple Network Access Control
• http://www.openflow.org/wp/snac/

– Flowvisor
• A open source “slicing” controller
• http://www.openflow.org/downloads/technicalreports/openflow-tr-2009-1-flowvisor.pdf

– Maestro/Beacon
• Java controllers optimized for multi-core CPUs
• http://www.cs.rice.edu/~eugeneng/papers/TR10-11.pdf

– ONIX
• A second generation infrastructure controller
• https://www.usenix.org/events/osdi10/tech/full_papers/Koponen.pdf

• Commercial
– Google, NEC, Broadcom, Bigswitch, Nicira, Pica8, …

• Nicira and Bigswitch recently received new funding
• Ericsson, Google and Nicira have implemented and deployed ONIX
• Bigswitch and Pica8 claim that they will open source their controllers (beacon)

http://www.osrg.net/ryu/index.html
http://noxrepo.org/doc/nox-ccr-final.pdf
http://noxrepo.org/doc/nox-ccr-final.pdf
http://noxrepo.org/doc/nox-ccr-final.pdf
http://noxrepo.org/doc/nox-ccr-final.pdf
http://noxrepo.org/doc/nox-ccr-final.pdf
http://trema.github.com/trema/
http://floodlight.openflowhub.org/
http://www.openflow.org/wp/snac/
http://www.openflow.org/downloads/technicalreports/openflow-tr-2009-1-flowvisor.pdf
http://www.openflow.org/downloads/technicalreports/openflow-tr-2009-1-flowvisor.pdf
http://www.openflow.org/downloads/technicalreports/openflow-tr-2009-1-flowvisor.pdf
http://www.openflow.org/downloads/technicalreports/openflow-tr-2009-1-flowvisor.pdf
http://www.openflow.org/downloads/technicalreports/openflow-tr-2009-1-flowvisor.pdf
http://www.openflow.org/downloads/technicalreports/openflow-tr-2009-1-flowvisor.pdf
http://www.openflow.org/downloads/technicalreports/openflow-tr-2009-1-flowvisor.pdf
http://www.openflow.org/downloads/technicalreports/openflow-tr-2009-1-flowvisor.pdf
http://www.openflow.org/downloads/technicalreports/openflow-tr-2009-1-flowvisor.pdf
http://www.cs.rice.edu/~eugeneng/papers/TR10-11.pdf
http://www.cs.rice.edu/~eugeneng/papers/TR10-11.pdf
http://www.cs.rice.edu/~eugeneng/papers/TR10-11.pdf
https://www.usenix.org/events/osdi10/tech/full_papers/Koponen.pdf

Another Way to Think About SDN

• Architecture: Generalized Programmable Network (GPN)
– The term “SDN” already too overloaded,….
– Encompass existing and future control planes

• And associated features
• “Hybrid Switch” modes

– Standardize a diverse set of APIs in addition to OF
• Such APIs talk to both existing control and data planes

• Objective: Enable tighter interaction between applications and the

network
– Inform network of desired behavior
– Inform application of data intrinsically available in the network

• Data mining, telemetry, NPS, …

– Provide greater agility, flexibility, and feature velocity

• Approach: Define two broad classes of APIs

– Network APIs
– Network Element APIs

• Also need a Generalized Switch Model

Recall the OF 1.0 Switch Model

Flow Table
(TCAM)

Redirect to Controller

Drop

Forward with
 edits

Packet

Apply actions

Encapsulate packet to controller

Need a richer switch model to deal with data and control planes and features

OF/OF++,
Hybrid Switch

GPN Network Element
(Agent Architecture/Hybrid Switch)

Inform network of desired behavior Inform application of data intrinsically in the
network

Network Element

A
n

a
ly

ti
c
s

C
la

s
s
if
ie

rs

Q
o
S

T
u

n
n

e
ls

C
o

n
fi
g

T
o

p
o

lo
g

y

R
o
u
te

s

R
o

u
ti
n

g

 E
x
te

n
s
io

n
s

Agent
C

ro
s
s

C
o

n
n

e
c
t

Data Plane Control Plane
Management

Plane

What is a Hybrid Switch?

• Abbreviated Hybrid Switch Problem Space
– Make OF/SDN coexist with existing more general switch/network

models
• Why is this hard again?

• Proposed Models

– Ships in the Night and Integrated Mode
– Integrated Mode

• Envision OF as one of many APIs we can use to build network
probramability

• Hybrid Switch WG recently chartered by ONF

– Jan Medved of Cisco is the Chair
– Possibly related: “SDNP” activity in IETF

• But note no “SDNP BOF” at upcoming Paris IETF

A Couple Of Hybrid Switch Use Cases

• Installing ephemeral routes in the RIB
– Install routes in RIB subject to admin distance or …
– Moral equivalent of static routes, but dynamic
– May require changes to the OF protocol/model

• Edge classification
– Basically use the OF as an API used to install ephemeral classifiers at

the edge
– Moral equivalent of … ‘ip set next-hop <addr>’ (PBR)
– Use case: Service Engineered Paths

• Program switch edge classifiers to select set of {MPLS, GRE, …} tunnels
• Core remains the same

• Service Chaining

– Let’s talk a bit more about kinds of service chains…

Programmable Service Chains

• Basic Use Cases
– Endpoints vs. In-line services

– Composite Services / Service
Chaining

– Flow Routing
• Fine vs. Coarse Grained Flows

• Filtering vs. Routing

• Placement vs. Topology

• Addressing vs. Flows

• Future/Unknown Use Cases
– CDN, NDN, Optical xconnect,…

e2e: client-server, peer-to-peer

in-line service

endpoint service

in-line service chain

Applications

Programmable Network Architecture

... Cloud OS
Management

System
User Application

(e.g. Cloudburst)

Inform network of desired behavior Inform application of data intrinsically in the
network

Network Element

NOS

 Agents

A
n

a
ly

ti
c
s

C
la

s
s
if
ie

rs

Q
o
S

T
u

n
n

e
ls

C
o

n
fi
g

T
o

p
o

lo
g

y

R
o

u
te

s

R
o

u
ti
n

g

 E
x
te

n
s
io

n
s

C
ro

s
s

C
o

n
n

e
c
t

All Protocols:
• NetConf, CLI, NetFlow, OF,

PCEP

TE++:
• draft-previdi-isis-metric-extensions

GENAPP:
• draft-isis-genapp-extensions

GEN BGP-NLRI:
• New tbw draft

Config:
• WS, NEtConf, CLI
• Yang data model
• Data persistency

Stateful PCEP:
Draft-crabbe-pce-stateful-pce

Stateful PCEP:
Draft-crabbe-pce-stateful-pce

“Orchestration”

APIs & NPDL
BGP-LS:
draft-gredler-idr-ls-distribution

ALTO:
Draft-ietf-alto-protocol OF++ OF++ OF:

• Hybrid router/switch

Service Provider Network Model

Router

“Orchestration”

Services

Multi-Layer PCE

Optical

Optical
Router

DC/Cloud

λ

Service
Service Service

Service

Optical

Service Wires

IP/MPLS

Paths
Topology

Tunnels
Topology

NPS/ALTO CDNI

IP /MPLS Tunnel

Service Wire

Service Control & Admin

Topologies

 So where this is all going?
The Programmable Network

“Network
 Hypervisor”

“Programming,
 Customization”

“Orchestration,
 Configuration,
 Control”

“Efficient
 Forwarding”

Slide courtesy Frank Brockners

“Network Programmability” - Key Value Propositions

Enable customized network Control Planes
Increase the value of the network to applications and/or enhance the
behavior of the network through logically centralized components. Examples:
Inventory system assisted forwarding, Enhance application performance through
topology and traffic-matrix awareness, bandwidth/latency optimized service placement

Normalization of Network and Service Configuration and Control
Common cross-platform abstractions, components and associated APIs for device functions.
Perform configuration and network control on a network-wide basis, as opposed to
on a per-device/per-interface basis. Lower operational complexity;
Enable consistent policy/configuration throughout the network

Note that the SDN value proposition differs from the “OpenFlow” value proposition. OpenFlow’s is focusing on per-device level
programmability; i.e. creating a (potentially standard) interface to control the forwarding of flows in the device.

Network- and Topology-aware Virtualization
Support customer defined virtual network topologies.
Virtual topologies can include all devices in the network, including access devices, inner
network nodes, service nodes such as firewalls, loadbalancers, etc.

Slide courtesy Frank Brockners

Putting It All Together

• Network Programmability (as well as SDN) is About Abstractions

– SDN is a bigger concept that OpenFlow
– Network Programmability is a bigger concept that SDN

• Network Services Abstraction

– Global Topology Network View (physical, logical, virtual)
– Network Positioning, Telemetry, Data Mining
– Service Chaining/Pooling
– Service Orchestration/Provisioning

• Distributed Network Control Abstraction

– Network Operating System (NOS)

• Forwarding abstraction

– OpenFlow
– ACL/PBR
– “openflow-future (Google 2.0 proposal)
– RIB/Routing Interfaces

• Current thinking envisions OpenFlow/SDN working in concert with existing control planes

Q&A

Thanks!

