次世代ネットワークを構築するフォトニックネットワークへの期待

－フォトニックネットワーク技術の展望－

北山 研一

大阪大学 大学院工学研究科
E-mail: Kitayama@comm.eng.osaka-u.ac.jp
概要

インターネットのインパクト

フォトニックネットワークとは

- フォトニックMPLSネットワーク
- フォトニックバーストスイッチングネットワーク
- フォトニックパケットスイッチングネットワーク
Total U.S. Internet Traffic

Limit of same % GDP as Voice

New Measurements

Voice Crossover: August 2000

Projected at 4/Year

ARPA & NSF Data to 96

4/Year

2.8/Year

Source: Roberts et al., 2001

COPYRIGHT © 2001 CASPIAN NETWORKS, INC.
Two basic types of architectures: Voice & data

Circuit switching
- POTS
 - QoS guaranteed
 - Stream data
- Call loss
 - Queuing delay = 0
- Cost

Packet switching
- Internet
 - Best effort service: Only connection guaranteed by TCP/IP
 - Burst data
- Packet loss
 - Queuing delay

Arrival
- If not busy
 - Busy

Cost
QoS must be differentiated

<table>
<thead>
<tr>
<th>Media</th>
<th>Granularity</th>
<th>Latency</th>
<th>Jitter</th>
<th>Packet loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td>Packet</td>
<td>400ms ± a few sec</td>
<td>500ms ± a few sec</td>
<td>$10^{-9} \div 10^{-11}$</td>
</tr>
<tr>
<td></td>
<td>Burst</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Real-time Picture</td>
<td>Burst</td>
<td>A few 10ms</td>
<td>A few ms</td>
<td>$10^{-9} \div 10^{-11}$</td>
</tr>
<tr>
<td></td>
<td>Stream</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voice</td>
<td>Stream</td>
<td></td>
<td></td>
<td>$< 10^{-2}$</td>
</tr>
</tbody>
</table>

It takes 50 [msec] across the Pacific Ocean through the optical fiber.
インターネットの問題点

✔ 脆弱なネットワーク
 ➢ 輻轍が生じる
 ➢ ベストエフォート: QoSが保証されない

✔ フォトニックネットワークはソリューションとなり得るのか？
Network design philosophy: Two choices

✓ Two extremes;

#1 Stupid network*
 Abundant bandwidth **
 But terminal must be intelligent

#2 Active network
 Intelligent node under bandwidth constraint

Explosive increase of power consumption & size of node

Power consumption & size/node

(Ratio)

Year

2000 2001 2002 2003 2004 2005

2000 2001 2002 2003 2004 2005

Rate of traffic increase

R=1@2000

R=2

R=3

R=4

S. Nojima, Fujitsu Labs.
OXC switch vs. e-XC switch: Power consumption & size

<table>
<thead>
<tr>
<th></th>
<th>e-XC switch</th>
<th>OXC switch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
<td>1/3 @2.5Gb/s</td>
<td>1 @2.5Gb/s</td>
</tr>
<tr>
<td></td>
<td>2 @10Gb/s</td>
<td>1 @10Gb/s</td>
</tr>
<tr>
<td>Power consumption</td>
<td>>3 @2.5Gb/s</td>
<td>1 @2.5Gb/s</td>
</tr>
<tr>
<td></td>
<td>>3 @10Gb/s</td>
<td>1 @10Gb/s</td>
</tr>
</tbody>
</table>
概 要

インターネットのインパクト

フォトニックネットワークとは

- フォトニックMPLSネットワーク
- フォトニックバーストスイッチングネットワーク
- フォトニックパケットスイッチングネットワーク
フォトニックネットワーク技術とは

ネットワーク構成技術
制御プレーン（ルーティング制御/制御プロトコル）

フォトニックノード構成技術
IPルーティング部
光ストリーム信号ルーティング部

フォトニックノード構成技術
IPルーティング部
光パースト信号ルーティング部

フォトニックノード構成技術
光IPパケットルーティング部

トランスミッション・エンジニアリング

TAO『フォトニックネットワークに係る研究企画推進委員会』資料より
2002.3.27 北山
フォトニックネットワーク技術の研究開発の展開

回線交換型
ルータとODMの機能統合
最大データ粒度
カットスルー

統計多重
帯域予約不要
最小データ粒度
ストア＆フォワード

光パケットルーティングによる

目標領域

フォトニックラベルスイッチ
ルータによる
光ストリーム
光バースト

データの粒度（粗・細）
波長の動的・静的運用
波長の固定的運用

WDMリンク
高ビットレート化
超多波長/超高密度化
トランスペアレンシー拡大

OADM

2002.3.27 北山
2000年電子情報通信学会総合大会チュートリアル
規模によるネットワークの分類

IX: Internet exchange
Generic architecture of packet switch
多重化とパス技術

<table>
<thead>
<tr>
<th>多重化方式</th>
<th>パス実現技術と特徴</th>
</tr>
</thead>
<tbody>
<tr>
<td>デジタルパス</td>
<td>フレーム内の時間位置情報</td>
</tr>
<tr>
<td></td>
<td>ハード</td>
</tr>
<tr>
<td>バーチャルパス</td>
<td>セルヘッダ</td>
</tr>
<tr>
<td></td>
<td>ソフト</td>
</tr>
<tr>
<td>ラベルスイッチドパス</td>
<td>シムヘッダ</td>
</tr>
<tr>
<td></td>
<td>ソフト</td>
</tr>
<tr>
<td>オプティカルパス</td>
<td>波長</td>
</tr>
<tr>
<td></td>
<td>ハード</td>
</tr>
</tbody>
</table>

タイムスロット入れ替え: 空間スイッチ
フォトニックにおけるパケットのフォワーディングメカニズム

<table>
<thead>
<tr>
<th>In Label</th>
<th>Out Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ10</td>
<td>λ4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>In Label</th>
<th>Out Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>133.1.12.14</td>
<td>λ10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>In Label</th>
<th>Out Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ4</td>
<td>133.1.12.4</td>
</tr>
</tbody>
</table>

Ingress PLSR

Core PLSR

Egress PLSR

2002.3.27 北山

2002年電子情報通信学会総合大会チュートリアル
概要

インターネットのインパクトと問題点

フォトニックネットワークとは

- フォトニックMPLSネットワーク
- フォトニックバーストスイッチングネットワーク
- フォトニックパケットスイッチングネットワーク
Photonic MPLS vs. Photonic packet switching

Photonic MPLS network
- Cut-through
- LSP setup decoupled with forwarding
- Available hardware technology
- Circuit switching
- Scarcity of λ resource
- Flow aggregation not feasible
- Bottleneck at ingress nodes

vs.

Photonic packet switching
- Finest granularity
- Statistical multiplexing: Better BW utilization
- Slow e-header processing
- Photonic RAM not available
- Buffer scheduling required

Optical burst switching

Optical path must be set up immediately after a burst data arrives at the edge node!
Photonic burst switching

- Ingress router
- OB data
- Offset time
- IP router
- OXC switch
- λ₀
- λ₁
- λ₂
- Reservation
- Transmission
- Release
Challenges of photonic burst switchings

✓ Resource reservation protocol (RSVP)
 ➢ Overcoming the round-trip time delay for path setting
 ➢ Contention resolution of optical control packet

✓ High-speed processings for optical control packet
 ➢ Overhead time must be much shorter than the burst-length

✓ Burst assembly
 ➢ A potential bottleneck
概要

インターネットのインパクトと問題点

フォトニックネットワークとは

- フォトニックMPLSネットワーク
- フォトニックバーストスイッチングネットワーク
- フォトニックパケットスイッチングネットワーク
Target performance of photonic packet router

<table>
<thead>
<tr>
<th>Performance</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processing capability</td>
<td>1 Gbps [Gbps]</td>
</tr>
<tr>
<td></td>
<td>10M* 100 [Mpps]</td>
</tr>
<tr>
<td>Throughput</td>
<td>100Tb/s 1P/s</td>
</tr>
<tr>
<td></td>
<td>10Gb/s</td>
</tr>
<tr>
<td>Number of address entries</td>
<td>1k 10k</td>
</tr>
<tr>
<td></td>
<td>10k 100k</td>
</tr>
</tbody>
</table>

Current electronic router
*Hitachi GR2000 has the processing capability of 4[Mpps].
Photonic label space

<table>
<thead>
<tr>
<th>Number of addresses</th>
<th>Table lookup</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wavelength</td>
<td>1000</td>
<td>Simple Optical filter</td>
</tr>
<tr>
<td>Subcarrier (m-wave)</td>
<td>100</td>
<td>Milimeter-wave filter</td>
</tr>
<tr>
<td>Optical codes</td>
<td>Abundant</td>
<td>Ultra-fast Passive device</td>
</tr>
</tbody>
</table>
Optical encoder/decoder

Pulse train @10GHz

5ps

Variable tap

#1 #8

Optical phase shifter

Combiner

Planar lightwave circuit

8-chip bipolar code

5ps 2ps

Intensity [a.u.]

Time [ps]

Auto-correlation

Cross-correlation

Correlation based on matched filtering

- Processing done at the speed of light
- Optical correlation using a passive device
- No logic operation

Parallel photonic label processing based upon optical code correlation

- Power-split as many copies as the count of label entries
- Optical correlations between the copies and label entries in parallel
Architecture of photonic packet router for asynchronous variable-length packet

Optical Switching Unit

Optical Scheduling Unit

Optical Buffering Unit

Photonic label processor

Optical SW

Time sequencer

Scheduler S_1

Scheduler S_2

OC Encoder/Decoder

Time sequencer

Photonic label processor

Optical SW

Optical SW1

Optical SW
K. Kitayama, Seminar @Univ. Southampton (2000.9.14)

2002.3.27 北山
Dynamically reconfigurable OCDMA en/decoder

ThGG54 Fig. 1. (a) Schematic structure of the reconfigurable encoder/decoder—inset: spectral response of the uniform grating and (b) Phase shift as a function of electrical current (Current error bars correspond to the current source accuracy of ±0.5 mA; Phase shift error bars correspond to potential Bragg wavelength shifts due to change in the surrounding air temperature).

5x2[mm]x5[ps/mm] = 50[ps]
50[ps]x7 = 350[ps]
WDM fiber delay line (FDL)

Photonic memory?

L. V. Hau et al., NATUR, Vol. 397, Feb. 1999 “Light speed reduction to 17 metres per second in an ultracold atomic gas”

Figure 3 Pulse delay measurement. The front pulse (open circles) is a reference pulse with no atoms in the system. The other pulse (filled circles) is delayed by 7.05 µs in a 229-µm-long atom cloud (see inset (ii) in Fig. 1a). The corresponding light speed is 32.5 m s⁻¹. The curves represent Gaussian fits to the measured pulses.

Figure 4 Light speed versus atom cloud temperature. The speed decreases with temperature due to an atom density increase. Open circles are for a coupling power of 81 mW cm⁻² and the filled circles are for a coupling power of 12 mW cm⁻². The temperature at which the condensation temperature for Bose-Einstein condensation. The decrease in group velocity below Tc is due to a density increase at the atom cloud when the condensate is formed. From imaging measurements we obtain a maximum atom density of 8 x 10¹³ cm⁻³ at a temperature of 200 nK. Here, the dense condensate component constitutes 60% of all atoms, and the total atom density is 18 times larger than the density of a non-condensed cloud at Tc. The light speed measurement at 50 nK is for a cloud with a condensate fraction ≥90%. The finite dephasing rate due to state 1 does not allow pulse penetration of the most dense clouds. This problem could be overcome by tuning the laser to the D₁ line as described in the text.
Optical packet synchronizer

16[ns] x 8 x 8 steps = 1024[ns]
Optical packet synchronizer

ThGG106 Fig. 4. (a) Asynchronous input signal packets and (b) synchronous output signal packets. The empty time slot in Ch 1 output is due to the fact that two consecutive input optical packets are aligned to the previous and next time slots, respectively.
電子情報通信学会誌特集号（平成14年 8月号）
『フォトニックIPネットワークは人類の幸せのために』

目次

1. 総論 21世紀ネットワークの創造と限りないインパクト 北山研一（大阪大学）

2. 政治、経済、社会、文化面から
 2-1. IT基本法と「光の国」日本の国際戦略 石黒一憲（東京大学）
 2-2. デジタル大陸はサルの惑星？ 林敏彦（大阪大学）
 2-3. ネットバブルの崩壊後のECビジネス 前川徹（早稲田大学）

3. 情報通信産業から
 3-1. ブロードバンドIPネットワークの技術展望 三宅功（NTT）
 3-2. フォトニックIPネットワークが変えるネットワークビジョン 並木淳治（NEC）
 3-3. ブロードバンド化への期待 岡田昭広（富士通）
 3-4. フォトニックネットワークの進展と放送メディア 福地一、勝本道哲（通信総研）
 3-5. 情報家電の戦略：情報家電を支えるKey技術とユビキタスネット 鏡田富久（ACCESS）

4. 技術論：最新動向と今後の課題
 4-1. 光スイッチを用いた次世代インターネットエクスチェンジの設計 中川郁夫（インテック・ウェブ＆ゲノム）
 4-2. フォトニックネットワークの鍵となる技術 野島聡（富士通）、江村克己（NEC）

5. 結言 フォトニックIPネットワークの研究推進 青山友紀（東京大学）
第4回フォトニックネットワークをベースとするインターネット技術開発研究会

委員長 北山研一 顧問
副委員長 江崎浩 顧問

日時 平成14年3月27日 星期 09:30–17:30
会場 東京工業大学 2002年記念館 東京都目黒区大岡山

プログラム
委員長挨拶
 femmes

招待講演 een

自己周波数シフトとパルス整合を用いた超高速光変換システム

girl

ネットワークにおける高速ルジック設定のための光符号を用いたアーキテクチャの提案

構造化された光ネットワークにおけるルーティングプロトコル

ファイバ中の非線形光学現象を用いた光アナログディジタル変換

パネル討論 een

ファットエンティックネットワークの標準化を考える

パネル座長 青山 友紀 顧問

パネリスト 長津 尚英
荒木 壮一郎
前田 洋一
Thank you!