国際会議 EMNLP-IJCNLP2019 参加報告

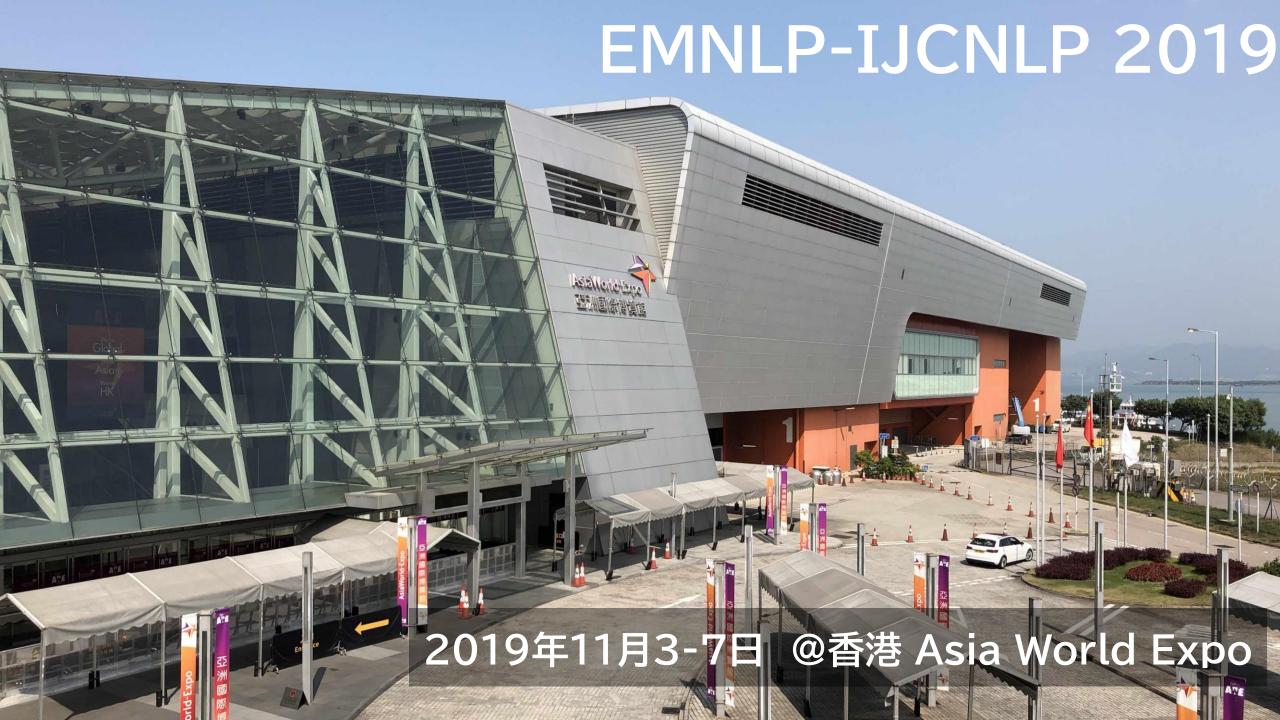
NHK放送技術研究所 宮崎太郎

自己紹介

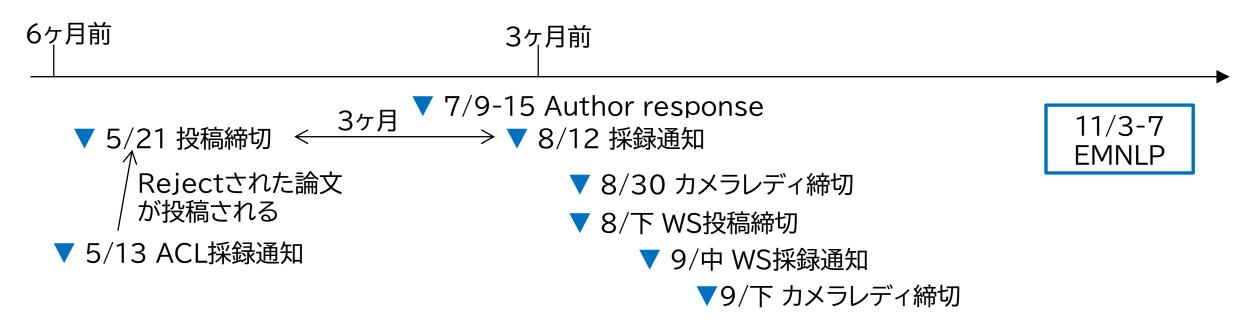
- 宮崎太郎(みやざきたろう)
- 2011年よりNHK技研でNLP周りの研究
 - Twitterからの情報抽出
 - 日本語→手話の翻訳
- 今回が初の有名会議での発表!

本日の内容

- EMNLP-IJCNLP 2019概観
 - 会議概要
 - 発表タイトルに見るトレンド
- Knowledgeを活用した学習まわりの論文紹介
 - Knowledge-Enriched Transformer for Emotion Detection in Textual Conversations
 - Machine Reading Comprehension Using Structural Knowledge Graph-aware Network
 - Language Models as Knowledge Bases?



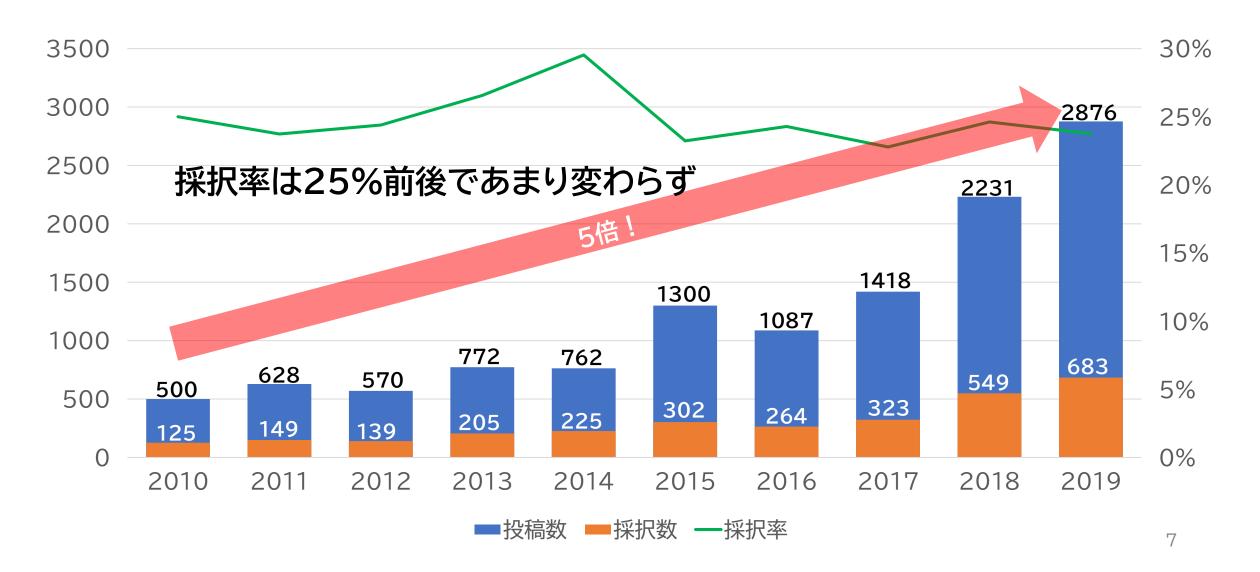
スケジュール感



- ▼6/9 香港で最大規模なデモ(100万人規模)
 - ▼ 6/12 香港デモで初の負傷者・逮捕者
 - ▼ 9/1 空港封鎖

11/8 香港デモで初の死者▼11/11 警察による銃撃▼11/11 日本人負傷▼

投稿数,採択数の推移

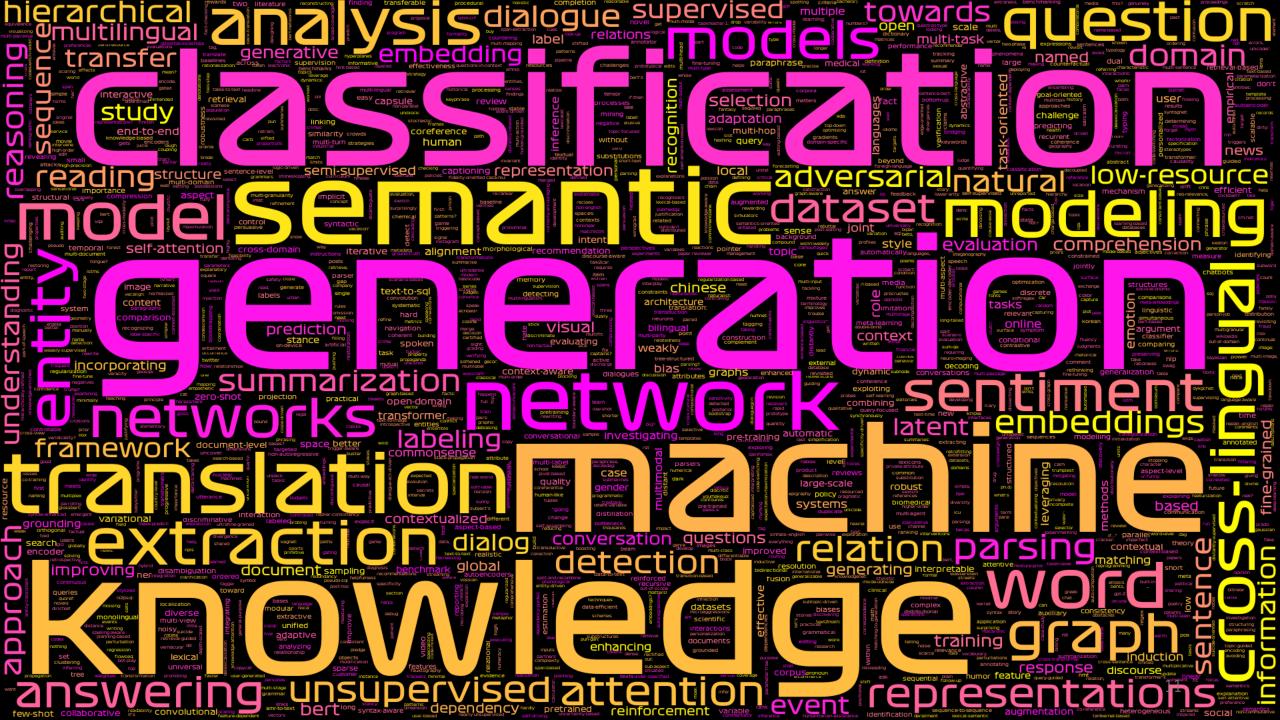


Reviewスコアと採択の関係

今年のレビューの特徴

- ・スコアは"Overall Recommendation"のみ
 - Author response時にはスコア一切不明
 - 査読者は"Reviewer Confidence"などを入力しているようですが・・・
- ・結構頑張ってAuthor responseしたけど、コメントの変化なし
 - ・ ACからのMeta-Reviewには反映されてそうなのでやはり重要そう

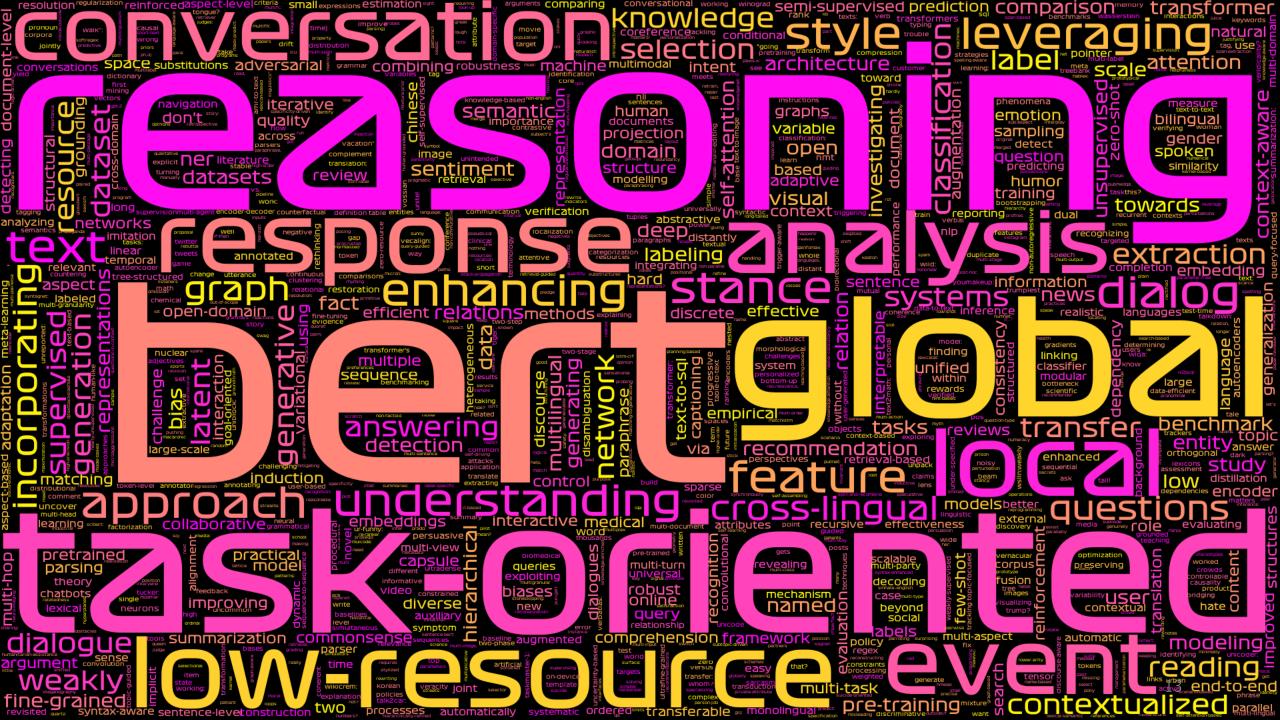
論文タイトルから見る 研究のトレンド



論文タイトルから見る研究トレンド

これだけではトレンドはよくわからん...

- これでは何も面白くないので以下のFeatureを加味
 - $Score(w) = \log(TF(w)) * IDF^*(w^w)$
 - $IDF^*(w) = \log\left(\frac{|D|}{\{d:d\ni w|+1\}}\right)$, $d\ni EMNLP2018$ の論文タイトル集合
 - 要は,前年と比較して増えたものを強調



単語ごとの論文数推移

単語	EMNLP 2018	EMNLP 2019
understanding	6	16
approach	8	19
analysis	13	30
text	30	68
generative	6	13
transfer	7	15
supervised	7	15
latent	7	14
cross-lingual	15	30
generation	32	63
graph	14	27
dataset	13	24
knowledge	24	44
dialogue	11	20
extraction	17	30

※EMNLP 2018で6回(1%)以上出現の単語のみを対象 増加率上位15件を表示

単語	EMNLP 2018	EMNLP 2019					
bert	0	14					
stance	0	6					
recommendation	0	5					
ner	0	5					
fact	0	5					
task-oriented	1	10					
global	1	10					
style	1	8					
response	2	11					
reasoning	4	19					
low-resource	4	15					
conversation	4	13					
questions	4	12					
event	5	15					
dialog	5	14					

※EMNLP 2018で出現が少なかったものから 気になったもの

単語ごとの論文数推移

単語	EMNLP 2018	EMNLP 2019				
understanding	6	16				
approach	8	19				
analysis	13	30				
text	30	68				
generative	6	13				
transfer	7	15				
supervised	7	15				
latent	7	14				
cross-lingual	15	30				
generation	32	63				
graph	14	27				
dataset	13	24				
knowledge	24	44				
dialogue	11	20				
extraction	17	30				

単語	EMNLP 2018	EMNLP 2019					
bert	0	14					
stance	0	6					
recommendation	0	5					
ner	0	5					
fact	0	5					
task-oriented	1	10					
global	1	10					
style	1	8					
response	2	11					
reasoning	4	19					
low-resource	4	15					
conversation	4	13					
questions	4	12					
event	5	15					
dialog	5	14					

流行りの手法は・・・

- BERTはとにかく多くの論文で使われている!
 - ・論文投稿締め切り半年前に公開されたことを考えると驚異的!
- ・テキスト生成以外のタスクでもGenerativeなアプローチ
 - 文書分類,イベント抽出などに使われているようです
- Knowledge, Graphなど,外部知識を取り入れる手法
 - ・文脈を取り入れた翻訳なども広い意味でこのカテゴリ?

流行りのタスクは・・・

- ・対話生成,対話分析の復興
 - ・文章理解や生成など,複雑なことを組み合わせても性能がでるように なった?
- Fact checkがとにかく注目されている
 - Keynote, Workshopなどもたくさん, が難しい・・・
- 多言語を同時に扱う手法タスク・・・
 - BERTがmulti-lingualなことの影響な気も

Knowledgeまわりの論文紹介

Knowledge...?

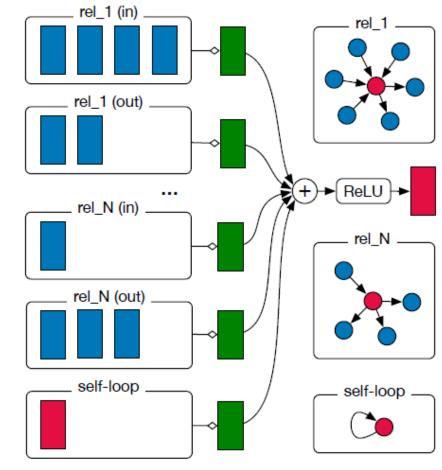
- 単語と単語の関係をつなぐKB(Knowledge Base)の利用が主流
 - ConceptNetやYagoなどが公開
 - •「外部知識」として活用



出典:ConceptNet (http://conceptnet.io/)

Graph...?

- KBのようなGraphも入力するNN
 - 基本的には、注目している単語とそれに KB上でつながる単語のベクトルを 足し合わせたベクトルを利用
 - ・足し合わせ方, 重みの決定方法が違う いろいろな手法が提案



[Schlichtkrull et al, 2017] 20

【参考】GCN(Graph Convolutional Network) [Kipf et al., 2016]

- 対象単語とその周辺単語のベクトルを足し合わせる重みを 事前情報として与える(学習しない)
 - エッジの重みを固定で与える
 - 性能が良くて計算は速いが、KBが変わったときに対応不可能

$$A = \begin{pmatrix} 1 & \cdots & 0.3 \\ \vdots & \ddots & \vdots \\ 0.7 & \cdots & 1 \end{pmatrix}$$

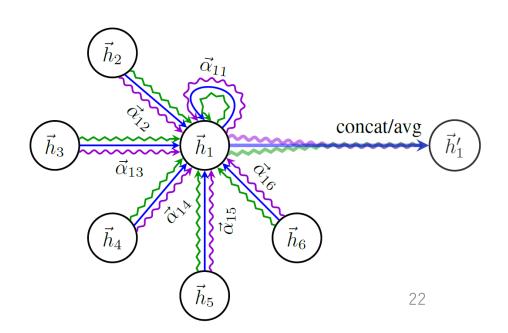
足し合わせ重み=隣接行列(固定)21

【参考】GAT (Graph ATtention network) [Veličković et al., 2018]

• 対象単語とその周辺単語のベクトルを足し合わせる重みを

「アテンションの値」として学習

- それぞれのエッジの重みを持たないため、
 - メモリ削減+学習が早い
- KBに新たなエッジが追加されても大丈夫



Knowledge-Enriched Transformer for Emotion Detection in Textual Conversations

Peixiang Zhong^{1,2}, Di Wang¹, Chunyan Miao^{1,2,3}

¹Joint NTU-UBC Research Centre of Excellence in Active Living for the Elderly

²Alibaba-NTU Singapore Joint Research Institute

³School of Computer Science and Engineering

Nanyang Technological University, Singapore

peixiang001@e.ntu.edu.sg, {wangdi, ascymiao}@ntu.edu.sg

概要

- 対話テキストの感情推定
 - Transformer-basedなモデルに 文脈とKBを使う手法(KET)の提案
- Ablation testにより、文脈、KB の双方が性能向上に貢献している ことを示した

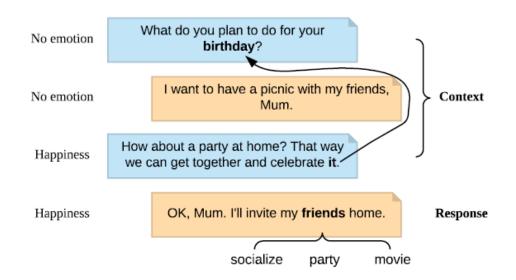
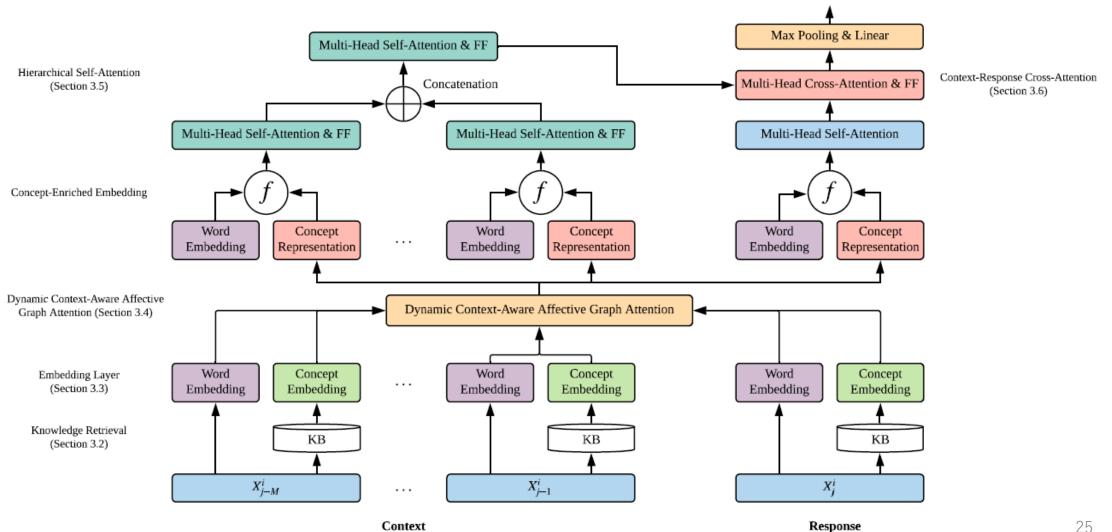


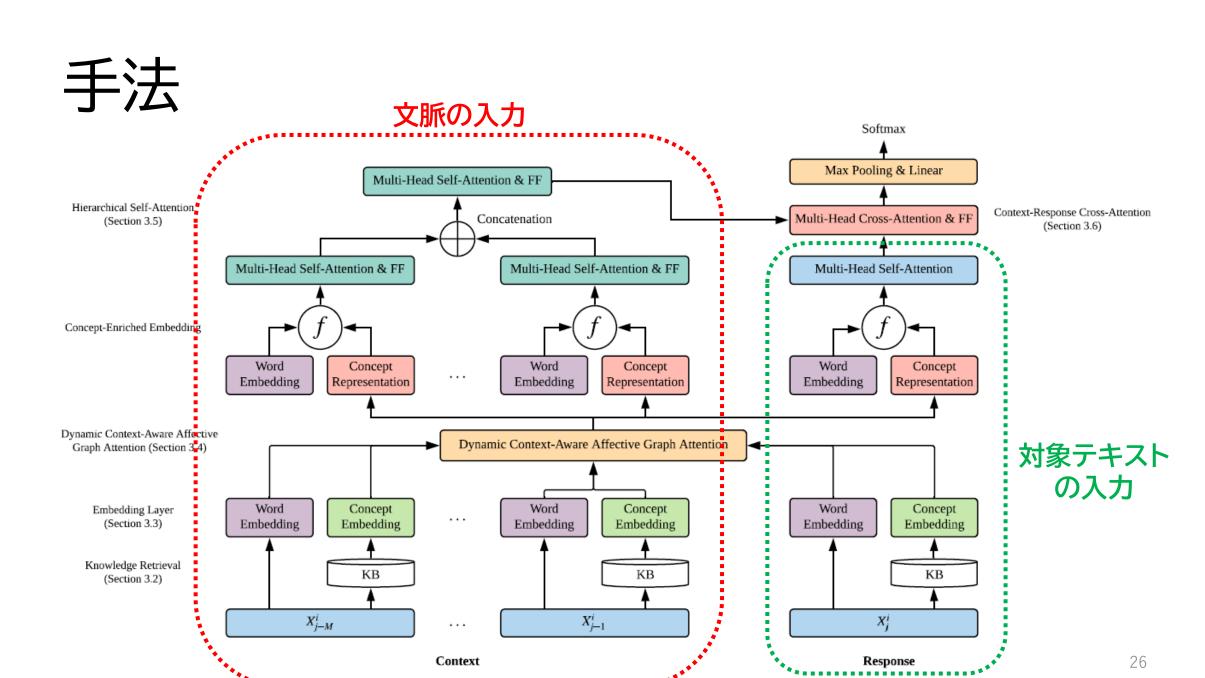
Figure 1: An example conversation with annotated labels from the DailyDialog dataset (Li et al., 2017). By referring to the context, "it" in the third utterance is linked to "birthday" in the first utterance. By leveraging an external knowledge base, the meaning of "friends" in the forth utterance is enriched by associated knowledge entities, namely "socialize", "party", and "movie". Thus, the implicit "happiness" emotion in the fourth utterance can be inferred more easily via its enriched meaning.

手法



25

Softmax



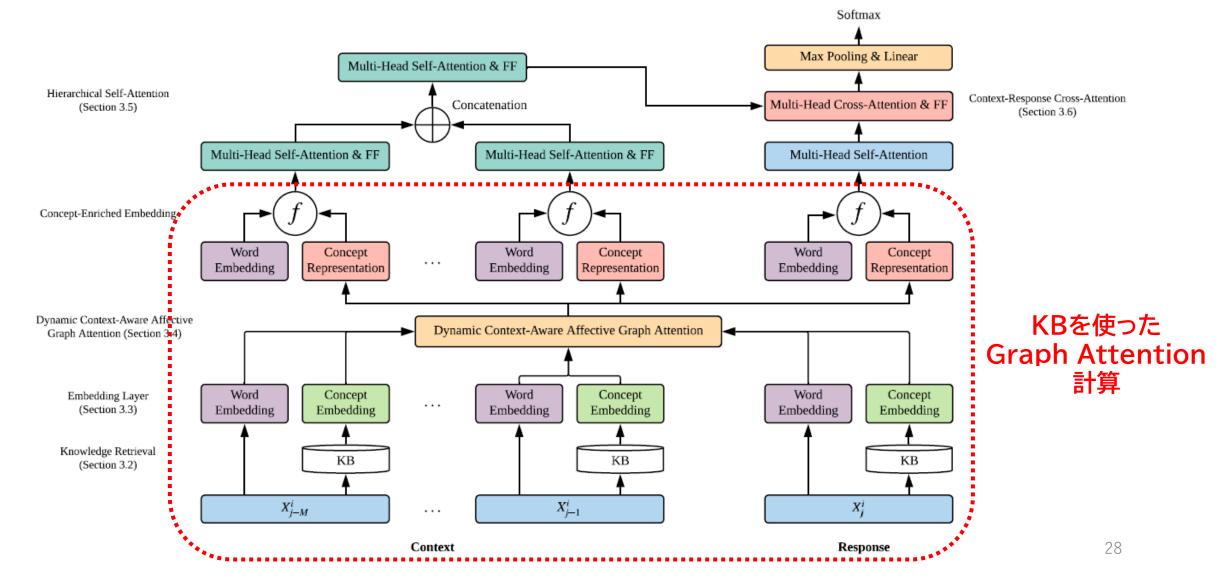
手法 文脈の入力 Softmax Max Pooling & Linear Multi-Head Self-Attention & FF Hierarchical Self-Attention Context-Response Cross-Attention Attention Multi-Head Cross-Attention & FF Concatenation (Section 3.5) (Section 3.6) Multi-Head Self-Attention & FF Multi-Head Self-Attention & FF Multi-Head Self-Attention Concept-Enriched Embedding Word Concept Word Concept Word Concept . . . Embedding Embedding Embedding Representation Representation Representation Dynamic Context-Aware Affective Dynamic Context-Aware Affective Graph Attention 対象テキストの入力 Graph Attention (Section 34) Concept Word Word Concept Word Concept Embedding Layer . . . Embedding (Section 3.3) Embedding Embedding Embedding Embedding Embedding Knowledge Retrieval KB KBKB(Section 3.2) X_i^i X_{j-M}^i X_{j-1}^i . . .

Response

27

Context

手法



実験結果

Model	EC	DailyDialog	MELD	EmoryNLP	IEMOCAP
cLSTM	0.6913	0.4990	0.4972	0.2601	0.3484
CNN (Kim, 2014)	0.7056	0.4934	0.5586	0.3259	0.5218
CNN+cLSTM (Poria et al., 2017)	0.7262	0.5024	0.5687	0.3289	0.5587
BERT_BASE (Devlin et al., 2018)	0.6946	0.5312	0.5621	0.3315	0.6119
DialogueRNN (Majumder et al., 2019)	0.7405	0.5065	0.5627	0.3170	0.6121
KET_SingleSelfAttn (ours)	0.7285	0.5192	0.5624	0.3251	0.5810
KET_StdAttn (ours)	0.7413	0.5254	0.5682	0.3353	0.5861
KET (ours)	0.7348	0.5337	0.5818	0.3439	0.5956

Table 2: Performance comparisons on the five test sets. Best values are highlighted in bold.

- ・提案手法が概ね良好
 - Attentionの計算方法によって若干のブレはある

実験結果

• 文脈, KBはそれぞれ使ったほうが良い結果

Dataset	KET	-context	-knowledge
EC	0.7451	0.7343	0.7359
DailyDialog	0.5544	0.5282	0.5402
MELD	0.5401	0.5177	0.5248
EmoryNLP	0.3712	0.3564	0.3553
IEMOCAP	0.5389	0.4976	0.5217

Table 5: Ablation study for KET on the validation sets.

Machine Reading Comprehension Using Structural Knowledge Graph-aware Network

Delai Qiu¹, Yuanzhe Zhang², Xinwei Feng⁴, Xiangwen Liao¹,
Wenbin Jiang⁴, Yajuan Lyu⁴, Kang Liu^{2,3}, Jun Zhao^{2,3}

¹ College of Mathematics and Computer Science, Fuzhou University, Fuzhou, China

² Institute of Automation, Chinese Academy of Sciences, Beijing, China

³ University of Chinese Academy of Sciences, Beijing, China

⁴ Baidu Inc., Beijing, China

noneqdl@gmail.com, {yzzhang, kliu, jzhao}@nlpr.ia.ac.cn
lxw@fzu.edu.cn, {fengxinwei, jiangwenbin, lvyajuan}@baidu.com

概要

- Machine Reading Comprehension(MRC)タスクでKBを活用
 - MRC: テキストを読んでそれに関する質問に答えるタスク
- Graph Attention Network (GAT) を応用したモデルの提案
- いくつかのデータセットを使ってえらい高い性能を発揮

手法

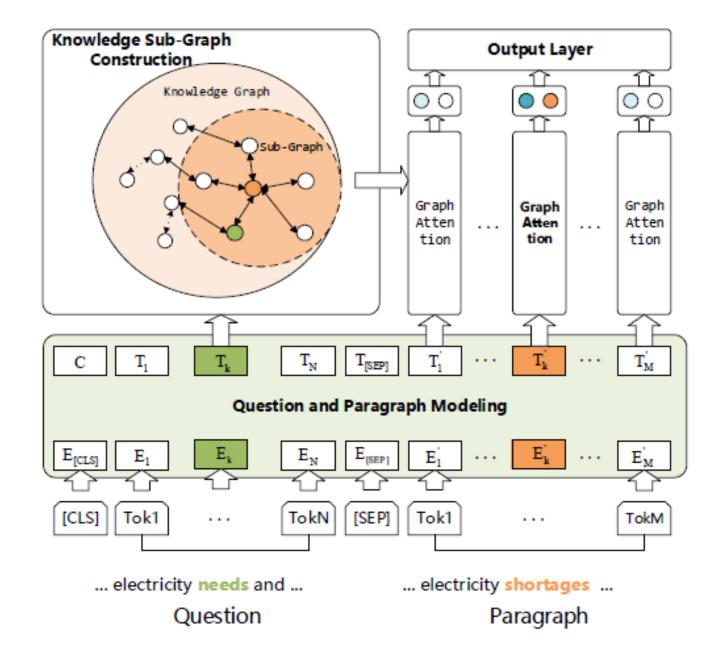


Figure 1: Framework of our SKG model.

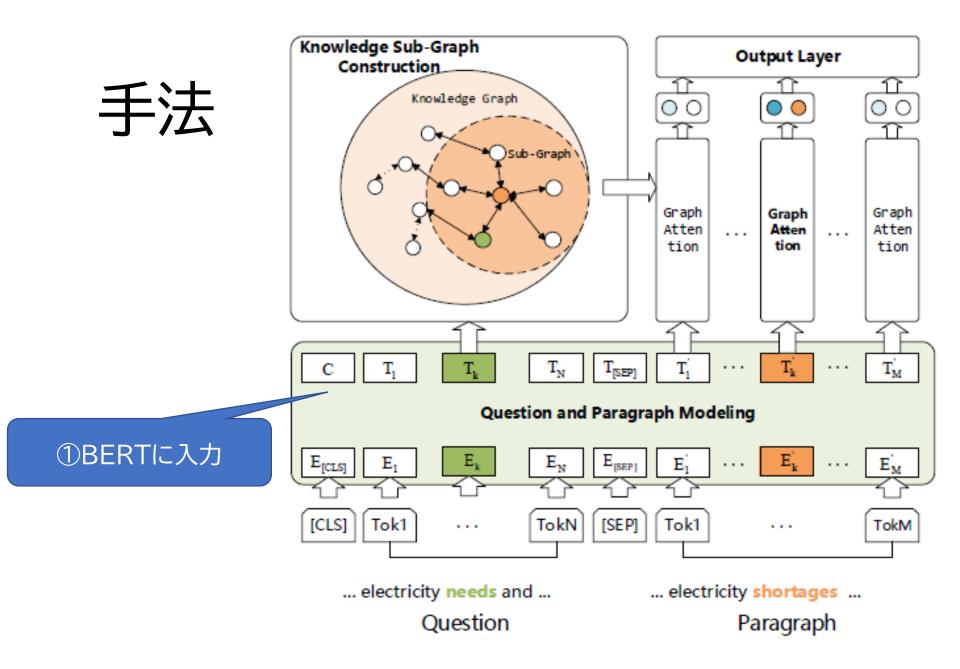


Figure 1: Framework of our SKG model.

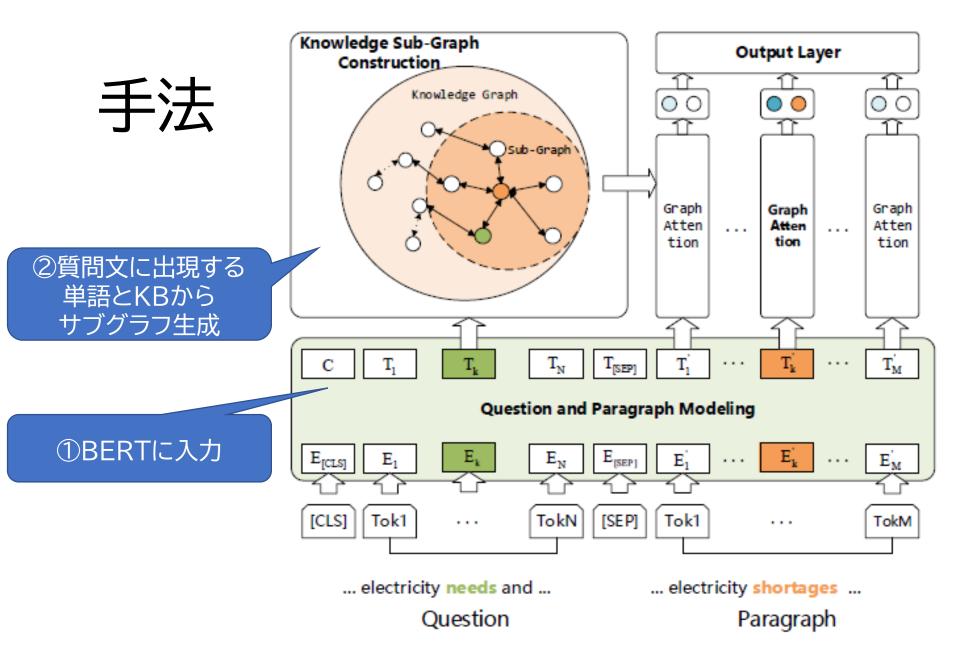


Figure 1: Framework of our SKG model.

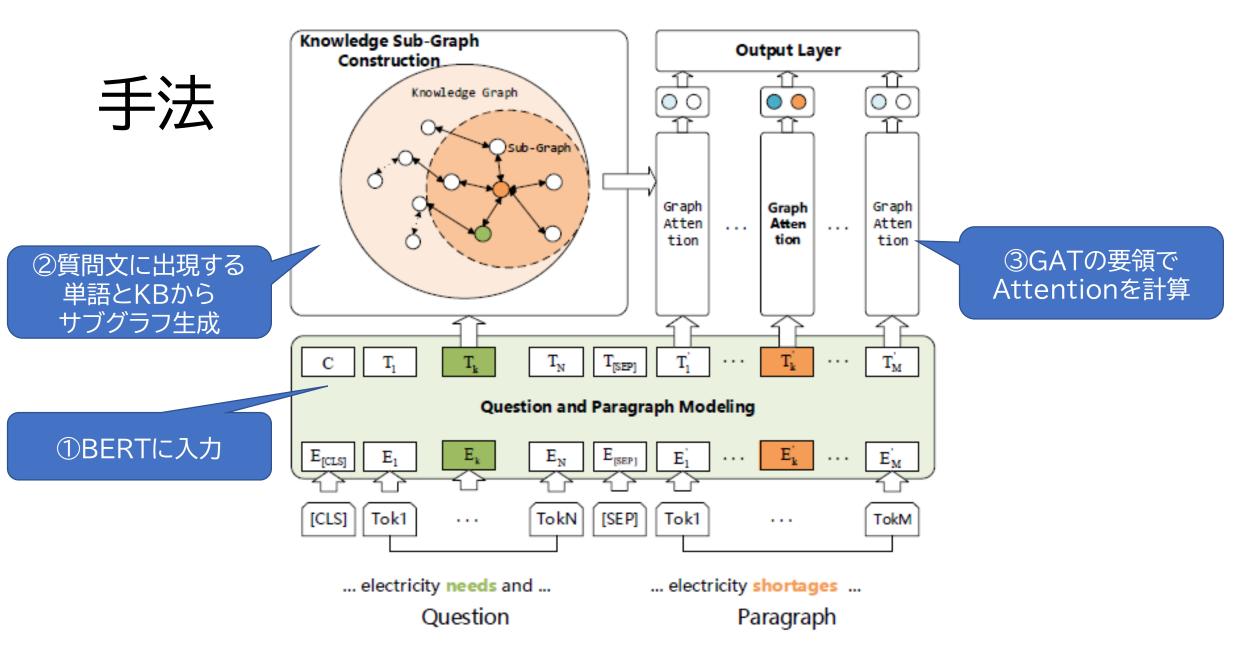


Figure 1: Framework of our SKG model.

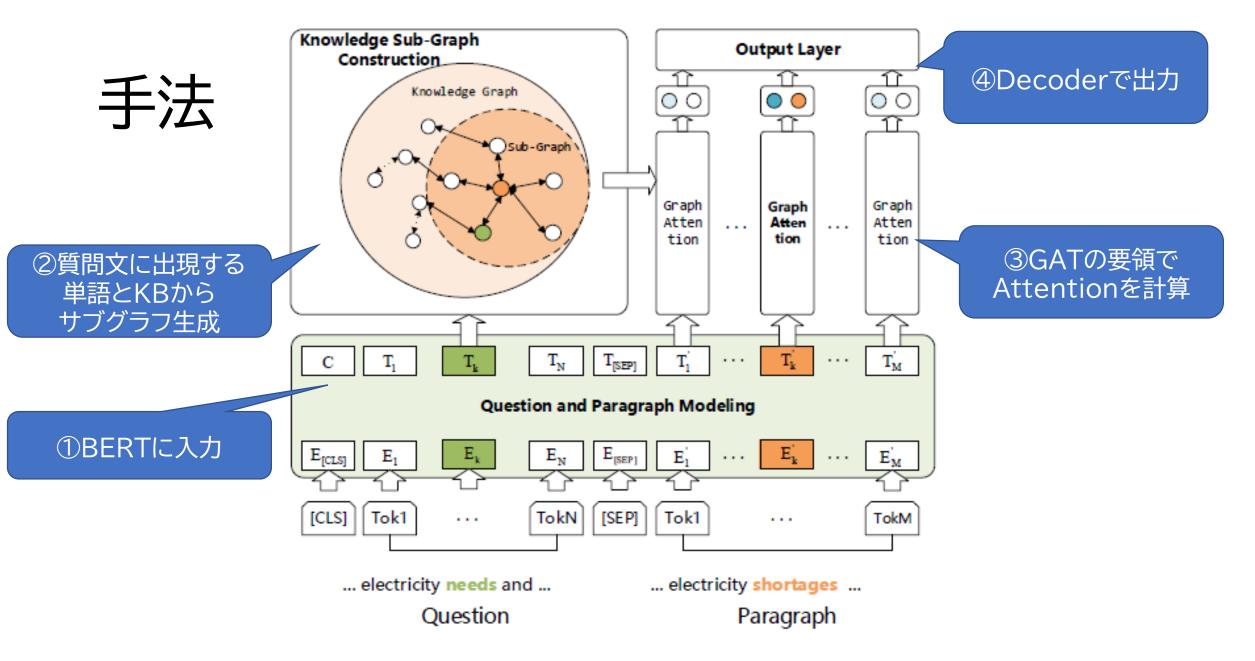


Figure 1: Framework of our SKG model.

結果

Model	E	M	F 1		
Model	Dev	Test	Dev	Test	
QANet (Yu et al., 2018)	35.38	36.51	36.75	37.79	
SAN (Liu et al., 2018)	38.14	39.77	39.09	40.72	
DocQA w/o ELMo (Clark and Gardner, 2018)	36.59	38.52	37.89	39.76	
DocQA w/ ELMo (Clark and Gardner, 2018)	44.13	45.44	45.39	46.65	
SKG+BERT-Large(ours)	70.94	72.24	71.55	72.78	

Table 1: The performance of different models on ReCoRD dataset.

Language Models as Knowledge Bases?

Fabio Petroni¹ Tim Rocktäschel^{1,2} Patrick Lewis^{1,2} Anton Bakhtin¹ Yuxiang Wu^{1,2} Alexander H. Miller¹ Sebastian Riedel^{1,2}

¹Facebook AI Research ²University College London

{fabiopetroni, rockt, plewis, yolo, yuxiangwu, ahm, sriedel}@fb.com

概要

BERT等の学習済みモデルをKB として使えるんではないか?

- BERT-LargeはQAタスクなどを 精度良く解ける!
 - ・ KBを明示的に使う手法より良い場合も!

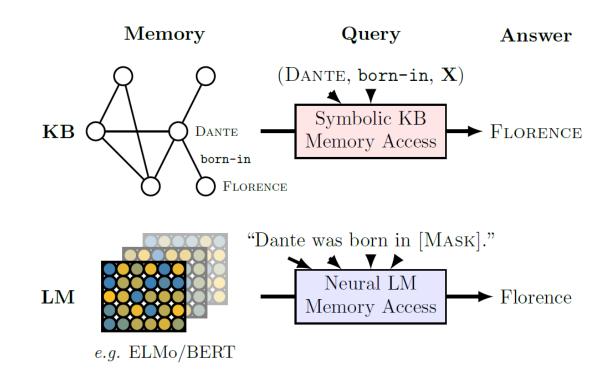


Figure 1: Querying knowledge bases (KB) and language models (LM) for factual knowledge.

概要

BERT等の学習済みモデルをKBとして使えるんではないか?

- BERT-LargeはQAタスクなどを 精度良く解ける!
 - KBを明示的に使う手法より良い場合も!

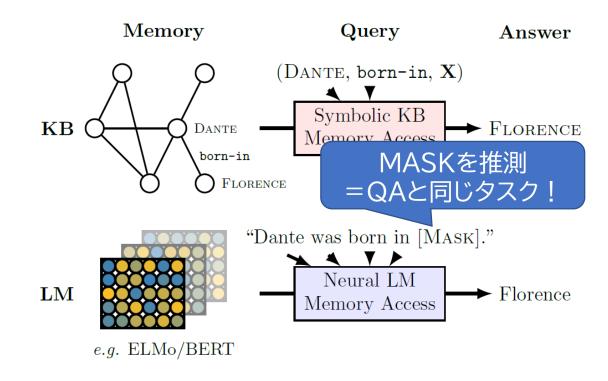


Figure 1: Querying knowledge bases (KB) and language models (LM) for factual knowledge.

結果

								一江					Larg
Corpus	Relation	Statistics		Base	Baselines		KB			LM			
	Relation	#Facts	#Rel	Freq	DrQA	RE_n	RE_o	Fs	Tx1	Eb	E5B	Bb	Bl
	birth-place	2937	1	4.6	-	3.5	13.8	4.4	2.7	5.5	7.5	14.9	16.1
Google PE	birth-date	1825	1	1.9	-	0.0	1.9	0.3	1.1	0.1	0.1	1.5	1.4
Google-RE	death-place	765	1	6.8	-	0.1	7.2	3.0	0.9	0.3	1.3	13.1	14.0
	Total	5527	3	4.4	-	1.2	7.6	2.6	1.6	2.0	3.0	9.8	10.5
	1-1	937	2	1.78	-	0.6	10.0	17.0	36.5	10.1	13.1	68.0	74.5
T-REx	<i>N</i> -1	20006	23	23.85	-	5.4	33.8	6.1	18.0	3.6	6.5	32.4	34.2
1-KEX	N- M	13096	16	21.95	-	7.7	36.7	12.0	16.5	5.7	7.4	24.7	24.3
	Total	34039	41	22.03	-	6.1	33.8	8.9	18.3	4.7	7.1	31.1	32.3
ConceptNet	Total	11458	16	4.8		-	-	3.6	5.7	6.1	6.2	15.6	19.2
SQuAD	Total	305	-	-	37.5	-	_	3.6	3.9	1.6	4.3	14.1	17.4

Table 2: Mean precision at one (P@1) for a frequency baseline (Freq), DrQA, a relation extraction with naïve entity linking (RE_n), oracle entity linking (RE_o), fairseq-fconv (Fs), Transformer-XL large (Txl), ELMo original (Eb), ELMo 5.5B (E5B), BERT-base (Bb) and BERT-large (Bl) across the set of evaluation corpora.

BERT-

ただし!

- すべてのタスクはCloze-Style
 - ・SQuADのようなQAタスクは手作業でCloze-Styleに変換
 - "Who developed the theory of relatively?"
 - →"The theory of relatively was developed by
- もう少し複雑なタスクの場合どうなるかは不明
 - BERTなどで回答文生成は難しいと思うので・・・

論文紹介パートまとめ

- Knowledgeを使うことで性能が向上! することも多い
 - Knowledge自体の適用化、タスクに合わせた拡張なども必要な場合も
 - それ自体が一つの研究テーマ(→KB Completionなど)
- Knowledgeを使うやり方はまだ皆さん試行錯誤中?
 - Graph Attention Network[Veličković et al, 2018] basedな手法が流行?
 - NeurIPS 2019でも80件近い「Graph」をタイトルに含む論文が