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Motivation
* Goal of neuroscience is to help understand the organization of the

brain =» possibility of classification based on brain measurement
data (“brain decoding”)
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* Recent studies have been utilizing network science for high-level
abstraction and evaluation of brain network graphs
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* Modularity structure (communities) particularly important:
modules contain nodes with similar functionalities

NC/§7? 2015/5/22 NetSci FiZZ S 2 (Q’?CiNet




Modularity in Networks

* Modularity characterizes possible divisions of networks with high
connectivity within modules and less between modules compared
to null model (random network)

* Modularity quality function by Newman (PNAS, 2006)
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e Community structure: partitioning of nodes that maximizes QO

* Calculation is performed by heuristic algorithm, e.g., Louvain
method by Blondel et al. (J. Stat. Mech., 2008)
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Multiple Realizations of Communities

* There are multiple realizations of communities due to:
— Repetitions from multiple runs (heuristic algorithm)

— Variations of conditions leading to different partitionings (brain
networks from different subjects or different tasks)

* We are interested in the common modularity structure for all
subjects/repetitions and in comparing communities across tasks

* Multi-slice modularity method introduced by Mucha et al. (Science,
2010) to find time-dependent, scale-dependent, or multiplex
structures in communities across slices of networks

— Generalized version of modularity with adapted Q-function for
multiple slices
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Multi-Slice Modularity

slice 1 Each slice may contain the
slice 2 adjacency matrix of a network
I‘H slice 3 * atdifferent points in time
?‘;\_ I‘E * at different resolutions
ANy ""Q\\_ i{:‘l + from different subjects
couplings w T =====TSE * from a subject performing

different tasks

* Couplings must be set depending on type of slices:
— ordered has only couplings of same node between nearest slices
(e.g. time, resolution)
— categorical has couplings of same node to all other slices
(e.g. subjects, tasks)

* Application to brain networks by Bassett et al. (PLOS Comput. Biol.
2013) and Cole et al. (Neuron, 2014)
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Experimental fMRI Data
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* Time series (7'= 300 scans) from fMRI data for N = 24 subjects (14
females, ages 21-37)

* Each subject performs 5 tasks: REST, SONG, COUNT, MEM_P, MEM _N
* Network nodes are regions of interest (ROls) following Power et al.
(Neuron, 2011) with M = 264 ROIs

* Two nodesiand are connected by a link 4; = 1, if the correlation
coefficient of their time series exceeds the threshold 0, which is set
individually for each subject/task that all 264 nodes remain connected
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Consensus Partitioning (Single Task)
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Comparing Partitions

» Strategies for comparing community partitions between tasks:

— pair counting: Rand coefficient (SR), adjusted Rand (SAR), z-
Rand (Traud et al., SIAM Rev., 2011)

— information-theoretic measure: variation of information (VI)
(Melia, J. Multivar. Anal., 2007)

* Comparison of all possible node pairs that fall into
same or different partitions, divided by the

total number of pairs (similar to consensus community assignment
mechanism) !

* Metrics can be arranged in 5 x 5 matrix of _3 ek
partition similarities/differences among tasks : each pair

e Community structure for each task determined N

independently =» multi-slice computation can partition 1 partition 2
determine cross—task modules
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Consensus Partitioning (Multiple Tasks)
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Example Result for t=0.5
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* Alllinks are binary and all couplings between slices og = 0 =1

* “Best” range of threshold is 0.85 <1 < 0.95 leading to around 10
modules per task (too few and too many modules hard to compare)

* All metrics qualitatively show the same partition similarity: MEM_P
and MEM _N (+ REST) similar, SONG and COUNT similar

NCIQ 2015/5/22 NetSci AR & 10 @%CiNet




Variation of Threshold 1
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Conclusion

* Classification of mental tasks based on complex network measures
of brain functional networks from fMRI data

* Multi-slice modularity effective for computing modules across
different networks (subjects, tasks, or both)

* Cluster comparison based on pair counting method for showing
similarity of partitions

* Considered 5 tasks showed similarities between unconstrained
tasks (MEM_P, MEM_N, and REST) and rhythmically constrained
tasks (SONG and COUNT) =» Further experiments with additional
similar tasks are needed

* Future work includes considering weighted networks and couplings,
studying the sensitivity of parameters, and a more thorough
neuroscientific investigation of commonalities/differences in
communities
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