CMOS 疑似ビリヤード制御回路の一検討

山田 海貴[†] 福原 雅朗[†] † 東海大学大学院情報通信学研究科

1. はじめに

疑似ビリヤード(Pseudo billiard)とは、特定の領域内を一 定速度で移動する信号が、その境界に達した瞬間即座に 移動する向きを切り替えるダイナミクスである.疑似ビリヤ ードの活用例としてカオスボルツマンマシン(Chaotic Boltzmann Machines: CBM)が挙げられる[1]. CBM ユニッ トは、各ユニットの内部に下限境界値 θ_{min} と上限境界値 θ_{max} の間を発振するアナログ信号 x_i を持っており、 x_i の傾き の正負に応じて"0"または"1"のバイナリ信号 S_i を出力する. CBM ユニットのハードウェア化は文献[2]で報告されている が、発振を制御するための回路が不明瞭であった.本論 文では、差動対コンパレータを使用した CMOS 疑似ビリヤ ード制御回路の構成を明確に提示し、提案回路が正常に 発振することを HSPICE シミュレーションにより検証する.

2. カオスボルツマンマシンの理論

CBM は、カオス性をボルツマンマシンに導入することで、 確率論的ではなく決定論的にボルツマンマシンを動作さ せることを実現した[1]. CBM ユニット内にはアナログ信号 $x_i \in [0,1]$ が存在し、その傾きは式(1)により定義される.

$$\frac{dx_i}{dt} = (1 - 2S_i) \left\{ 1 + \exp \frac{(1 - 2S_i)z_i}{T} \right\}$$
(1)

ここで z_i は *i* 番目の CBM ユニットの持つエネルギー, *T* は ネットワークの温度である. S_i は *i* 番目の CBM ユニットの出 力値であり, "0"または"1"の値をとり, 式(2)のように x_i が θ_{max} または θ_{min} に到達したときに S_i の状態が更新される.

$$S_i \leftarrow 1 \quad \text{when} \quad x_i = \theta_{max} \\ S_i \leftarrow 0 \quad \text{when} \quad x_i = \theta_{min}$$
(2)

文献[2]では式(1), (2)を実現するアナログ CMOS 回路が 示されているが,本文ではより具体的に式(1), (2)を満たす CMOS 疑似ビリヤード制御回路の構成と動作を検討する.

3. 提案回路の構成と動作

図1に示す提案回路は、スイッチ電流源、参照電圧 設定回路、差動対コンパレータで構成される.ここで、

"0"を 0[V], "1"を V_{DD} と定義する. スイッチ電流源は, 出力電圧 V_{Si} (S_i に相当する電圧)が"0"のときコンデンサ C_{xi} を充電し, V_{Si} が"1"のとき C_{xi} を放電することで, アナ ログ電圧 V_{xi} (信号 x_i に相当する電圧)を式(1)で定義され る傾きで変化させる. なお, V_{xini} と V_{sini} は V_{xi} の初期値を 設定する信号である. 参照電圧設定回路では, 予め任意 に設定する $V_{\theta max}$ (θ_{max} に相当する電圧)及び $V_{\theta min}$ (θ_{min} に 相当する電圧)により, V_{Si} に応じて参照電圧 V_{ref} の値を $V_{\theta max}$ または $V_{\theta min}$ に設定する. 差動対コンパレータでは, V_{xi} と V_{ref} を即座に比較することで,式(2)を満たすような V_{Si} の値を得る. なお, 差動対コンパレータに付属するバッファ は V_{Si} を"0"または"1"に増幅するための波形調整を行う.

4. HSPICE シミュレーション結果とむすび

提案回路は、Rohm0.18µm ルールに基づき設計した. HSPICE シミュレーション結果を図2に示す.なお、電源 電圧(V_{DD})を 3.3V、 $V_{\theta max}$ を 2.8V、 $V_{\theta min}$ を 0.6V、 V_{xini} を 1.7Vとした. V_{sini} が"1"のとき V_{xi} が V_{xini} となり、 V_{sini} が"0" となると V_{xi} の発振動作が開始される.このときの V_{xi} 及 び V_{si} の波形をみると、式(1)のように V_{xi} が上昇または下 降し、さらに式(2)を満たすように V_{si} の状態が更新され ており、提案回路が正常に発振していることがわかる. しかしながら、 V_{xi} の上限値付近では応答に遅延(delay time)が生じている.今後はこの遅延の要因を追求し、 提案回路を活用した新しいシステムの構築を目指す.

5. 謝辞

本研究は東京大学大学院工学系研究科附属システ ムデザイン研究センター基盤設計研究部門を通じシノ プシス株式会社,日本ケイデンス株式会社及びローム 株式会社の協力のもと行われた.

参考文献

[1] H. Suzuki et al., Sci, Rep., vol. 3, pp. 1610, 2013

[2] M. Yamaguchi et al., ICONIP, Part I, LNCS 9947, pp. 248-255, 2016

