鍵共有の証明可能安全性

東京大学 生産技術研究所 古原 和邦

Authenticated Key Establishment (AKE)

Classification of AKE (1/2)

- # of entities (2 n)
 - n party + 1 on-line TTP
 - n party + 1 off-line TTP
 - n party + 0 TTP

- Authentication type
 - (Anonymous)
 - One-side
 - Mutual

TTP: Trusted Third Party

Classification of AKE (2/2)

- Strength of long term secret
 - Strong secret
 - Signing key
 - Decryption key
 - Long common key
 - Weak secret
 - Human memorable short password

- Underlying problem
 - Discrete-log
 - Diffie-Hellman
 - Factoring
 - RSA
 - Rabin

What should be proven and how?

- Achievable goal
 - Usually, guessing any of fresh short term keys is hard
- Against which attacks
- Under some assumptions
 - E.g. DDH problem is hard etc.
- How

Attacks on AKE

- Eavesdropping
- Impersonation
 - Replay
 - Intruder-in-the-middle
- Short-term key (session key) revealment
- Long-term key corruption (forward secrecy)

Ideal characteristics against revealment

Toy Bad Example

Why Revealment?

Ideal characteristics against corruption (Forward Secrecy)

Why Corruption?

What should be proven and how?

- Achievable goal
 - Usually, guessing any of fresh short term keys is hard
- Against which attacks
- Under some assumptions
 - E.g. DDH problem is hard etc.

How to prove

- Hand Proof
 - Reduction approach
 - Real-world-ideal-world approach
- Automated Proof (Formal Verification)
 - Model checking
 - Exhaustive search of all possible states
 - Automated theorem proving
 - Automation of usual proof techniques

How to prove

- Hand Proof
 - Reduction approach
 - Real-world-ideal-world approach
 - Automated Proof (Formal Verification)
 - Model checking
 - Exhaustive search of all possible states
 - Automated theorem proving
 - Automation of usual proof processes

History of Hand Proof

1993-1995 Formalization Application to short passwords and reduction approach Bellare-Rogaway Bellare-Rogaway-Pointcheval model [BPR00] model [BR93,95] Real-world-ideal-world approach Shoup model [Sho99] +Modular approach Bellare-Canetti-Krawczyk model [BCK98] 2001

Canetti-Krawczyk model [CK01]

How to prove

- Hand Proof
- Reduction approach
 - Real-world-ideal-world approach
 - Automated Proof (Formal Verification)
 - Model checking
 - Exhaustive search of all possible states
 - Automated theorem proving
 - Automation of usual proof processes

Adversary's View (1/2)

Node 3
Node 2
Node 4

Node 1

Node 5

Adversary's View (2/2)

Oracles modeling the attacks

- Eavesdropping
 - -> Execute Oracle
- Impersonation
 - -> Send Oracle
- Short-term key revealment
 - -> Reveal Oracle
- Long-term key corruption
 - -> Corrupt Oracle

Execute Query

Send Query: Impersonation of Node 1

Send Query: Impersonation of Node 4

Send Query: MITM

(sid5,4)

Corrupt Query for Forward Secrecy

still fresh

skill fresh

(sid1,2) Node 2

1. Corrupt(2,3)

Node 3

Node 4

2. The long term key of

2 for 3

Node 1

Adversary

Node 5

Corrupt Query for Non Forward Secrecy -> not fresh

-> not fresh

1. Corrupt(2,3)

Node 3

Node 4

(<mark>sid1,3)</mark>

2. The long term key of

2 for 3

Node 1

Adversary

Node 5

Adversary's View

How to prove

- ****
- Reduction approach
- -
- Real-world-ideal-world approach
- Automated Proof (Formal Verification)
 - Model checking
 - Exhaustive search of all possible states
 - Automated theorem proving
 - Automation of usual proof processes

Real-World-Ideal-World Approach

Ideal-world adversary

Real-world adversary

Reduction Approach

-

Toy Example: Anonymous DH

$$y_1 := g^{r_1}$$

$$y_2 := g^{r_2}$$

$$km_c = g^{r_1 g_{r_2}}$$

 $km_s = g^{r_1 g r_2}$

Assumption:

- Computationally Indistinguishable
- DDH is hard, i.e. $(g^{r_1}, g^{r_2}, g^{r_1gr_2}) \approx (g^{r_1}, g^{r_2}, g^{r_3})$
- Only Execute and Reveal queries are allowed

Proof in Real-World-Ideal-World Approach

Real-world adversary

Proof in Reduction Approach (1/2)

1. Hard problem (assumption)

Given (g^a, g^b, g^x) decide whether x=ab or not

Execute (sid1, g^{agr_1} , g^{bgr_2})

Execute (sid2, g^{agr_4} , g^{bgr_5}) Reveal(sid1)

adversary

3. Computationally indistinguishable from real ones under DDH assumption

Proof in Reduction Approach (2/2)

1. Hard problem (assumption)

Given (g^a, g^b, g^x) decide whether x=ab or not

- 3. Test(sid2)
- 4. challenge: Given decide "real" or

6. Extraction

If "real" x=ab.
Otherwise x ab.

5. response

Conclusion

Explained the idea behind hand proofs

- Adversary's view
- Oracle queries
 - Execute, Send, Reveal and Corrupt
- Reduction approach
- Real-world-ideal-world approach