
DEWS2004 I-7-03

Stepwise Optimisation Method for k-CNN Search

Jun FENG�, Naoto MUKAI��, and Toyohide WATANABE��

� Department of Information Engineering,

Graduate School of Engineering, Nagoya University.

�� Department of Systems and Social Informatics,

Graduate School of Information Science, Nagoya University.

Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, JAPAN

Abstract The problem of k-CNN search along a specific route on road network is to find out k nearest neighbor (k-NN)

objects for any place on the route. k nearest neighbors are selected based on the path length from the route to the objects, and

the continuous search for all the points on the route should be considered. A k-CNN search method is proposed by using an

incremental k-NN search based on road network. The method is an extension of CNN search method proposed by adding new

data structure – a fixed length queue for recording up-to-now intermediate results. Because the search regions can be reduced

stepwise by the intermediate results, our k-CNN search is efficient.

Key words Geographical Information System, path searching, spatial index, road network

1. Introduction

The problem of k continuous nearest neighbors (k-CNN) search

along a specific route on road network is to find out k nearest neigh-

bor objects for any place on the route. It is an instance of spatial

distance semi-join problem. The spatial distance join associates one

or more sets of spatial object by distances between them. The dis-

tance semi-join is a useful special case of the distance join. It finds

the nearest object in one spatial dataset T for each object in another

spatial dataset S [1]. A distance is usually defined in terms of spatial

attributes, but may also be defined in many different ways according

to various application-specific requirements. In GIS and ITS appli-

cations, for example, other metrics such as the shortest path can be

used to measure a distance between two places on a road network.

A spatial join algorithm typically contains two steps, filter and re-

finement, as proposed in [2]. In the filter step, MBR approximations

are used to find pairs of potentially intersected spatial objects. Then,

in the refinement step, it is guaranteed that all the qualified (i.e., ac-

tually intersected) pairs can be produced from the results generated

in the filter step. In contrast, it is completely unreasonable to pro-

cess the k-CNN search on road network in two separate filter and

refinement steps, because of the fact that a filtering process is based

on MBR approximation. The distance order of object pairs mea-

sured by MBR approximation does not reflect a true order based on

actual representations [3]. This is because, for any two pairs of spa-

tial objects � ��� �� � and � ��� �� � (�� � � and �� � �), the

fact that

�����	
������	
������ �� �����	
������	
������

does not necessarily imply that

�������� ��� �� �������� ����

Here, �������� ��� is a distance between two spatial objects.

However, based on the properties of MBR approximation, there

is

�����	
������	
������ �� �������� ����

Therefore, if the longest distance between the first k pairs of objects

can be predicted, spatial join can be done inside a proper region lim-

ited by the distance, and MBR approximations can be used to attain

an efficient processing. The distance is a cutoff distance that is de-

termined by k and the spatial attribute values of two datasets S and

T .

In this paper, we propose new strategies for efficiently processing

k-CNN search on road network based on our previous CNN search

method [4]. The main contributions of the proposed solutions are:

� We provide an approach for estimating the cutoff distance

for k-CNN search on road network. This estimated distance allows

the algorithms of k-NN search for any point on the predefined route

to avoid a slow start problem, which may cause a substantial delay

in the query processing.

� Adaptive algorithms are proposed to process k-CNN search

in a way that the k-NN’s are returned with an incremental precision.

This algorithm adopts a fixed length queue for recording cutoff dis-

tance and the first k candidates in the search process.

The rest of this paper is organized as follows. Section 2 surveys

the related work on processing CNN and k-NN queries. Section

3 depicts preliminaries of path on on road network; Section 4 de-

scribes our approaches. Section 5 introduces the algorithms for k-

CNN search on road network. The conclusion is drawn in Section

6.

2. Related Work

2. 1 CNN search

The existing work for CNN search is almost presented from the

computational geometry perspective [5] [6] [7]. To the best of our

knowledge, the latest work dealing with CNN queries is given in [5].

CNN search for line segments was effective, based on the straight-

line distance between objects. The same effect can be found in [7],

which only finds the single NN for a whole line segments.

C1

td

S

Eta tb tc

te tf

tg

P1

Q1

Q2

P2 P3

C2 C3

C4
Q3

P5P4

Figure 1 Road network, specific route [S, E], and target objects.

We have proposed a method [8] to solve the problem based on

common situations in GIS: the distance from a point on the route

to a target place should be decided by the path length or travel

cost of them; and the target objects and the road network are man-

aged in GIS datasets, respectively. Consider the example given in

Figure 1, where the specific route is �� �� �, and the target object

set is ���, ��, ��, ��, ��, �� , ���. The output of the query is ��
��� �� ��� �� � �, � ��� ��� ��� �� � �, � ��� ��� ��� �� � �,

� ��� ��� ��� �� � ��, � ��� ��� �� �� � ��: the target object ��

is NN for the interval (subroute) �� ��� �, and the shortest path from

the subroute to �� is �; �� is NN for the subroute ��� ��� � with the

shortest path �; �� is also NN for the subroute ��� ��� � with the

shortest path �; �� is that for the subroutes ��� ��� � and ��� �� �

with the shortest paths � and �, respectively.

By selecting computation points heuristically (e.g., �S, ��, ��,

��, ��� in the previous example) and initializing NN search region

for these computation points, our CNN search finds the target ob-

jects with the shortest path length from all the points on the route

effectively.

However, our method only supports to find the nearest neighbor

for any point on the predefined route, and does not assure that the

candidates for k-NN queries can be generated in the search process.

2. 2 k-NN search

Researches on k-NN search have been conducted from the view-

point of incremental spatial join [3], [9], [10] and distance brows-

ing [1], [11].

In [3], a k-distance join algorithm that used spatial indexes such

as R-trees was proposed. Bi-directional node expansion and plane-

sweeping techniques were used to prune distance pairs, and the

plane-sweeping is further optimized by strategies for selecting a

sweeping axis and direction. During top-down traversals of R-tree

indexes, they store examined node pairs in a priority queue (main

queue), where the node pairs are kept in an increasing order of dis-

tances. By using the main queue, a spatial distance join query is

processed incrementally. Suppose a maximum of k-nearest pairs of

objects are to be retrieved by a query, any pairs of nodes (and any

pairs of their entries) whose distance is greater than all of the k can-

didate pairs cannot be qualified as a query result. Thus, they used

another priority queue to store the k minimum distances and use the

queue to avoid inserting unqualified pairs into the main queue dur-

ing the node expansions. However, for the semi-join query based

on road network (i.e., the k-CNN query on road network), the dis-

tance function used in the spatial index structure is different from

that for computing the distance between objects (the shortest path

from a source place to a target place), and the two queues used in

their methods cannot be used directly.

In [1] and [11], incremental algorithms were presented to com-

pute the distance join and distance semi-join in the sense that the

pairs resulting from the corresponding operation are reported one

by one. This enables the query processor to use the algorithms in

a pipelined fashion. The algorithms aim to deliver results as soon

as possible. Their algorithm is suitable for any spatial data struc-

ture based on a hierarchical decomposition. The distance functions

are all based on a distance metric for points, ������ ��, such as the

Chessboard, Manhattan or Euler metric. The algorithm functions

correctly as long as the distance functions are “consistent”. Infor-

mally, “consistent” means that no pair can have a smaller distance

than a pair that gives rise to it during the processing of the algo-

rithm. For example, if � and � are objects in � and � , respec-

tively, and � is a leaf node which contains �, then they must have

������ �� �� ������ ��. If the distance functions are all based on the

same metric, this condition will hold due to the property of triangle

inequality. However, the distance defined on road network is the

shortest path from a source place to a target place. When the tar-

get objects and road network are managed by different spatial data

structures, respectively, to compute the distance on road network

should first merge the two data structures. The merging operation is

a computational-intensive process.

3. Preliminaries

In this section some concepts about road network and proposi-

tions of path search regions on a road network are recapitulated.

3. 1 Road network, route and computation point

A road network with nodes and links representing the cross-

points and road segments can be regarded as a graph

� � � � ��� ���

where V is a set of vertices � ��, ��, ...�	�, and L is a collection of

edges � ��, ��, ...�
�, used to indicate the relationship between ver-

tices. For example, if the vertices �� and �� are related, the relation

would be indicated by an edge that will be designated as

�� � ���� ����

The predefined route from a start point � to an end point �� is given

by an array

�������� ��� � ������ ���� ���� ���� ��	����� � �� ��	 � ���

��� � �� �� � ������� ����� �� � �� � � �� ���� �� ���

A sub-route of �������� ��� is defined as ����� ���� ����, which

overlaps with �������� ���. If the target object set is � �

���� ��� ���� and �� � � with a corresponding node ��� � � , the

NN for ��� on �������� ��� is �� when the shortest path

���� �� �� � ��������� ���� �� � ���������� � �� �� � ��� ��� �����

[Definition 1] Node �� � � is called the divergence point between

�������� ��� and ���� �� �� if:

1) The sub-route ����� ���� ��� of ���� �� �� is also a sub-route

of �������� ���;

2) The node following �� along ���� �� �� is not on

�������� ���. �

Consider Figure 1: �� is NN of node � on ����������, the

shortest path from � to �� is �. The divergence point between

���������� and � is ��, and is just the point in which the short-

est path branches off the route. It is obvious that the points on the

sub-route ����� ���� ��� share the same NN ��. Therefore, there is no

need to search NN for every point on the sub-route; CNN search can

be regarded as a series of NN searches for some points on the route;

and those points are called computation points.

[Definition 2] Node �� � � is called the computation point of

�������� ��� if:

1) �� is the start point of �������� ���;

2) �� is on �������� ��� and is also a node on the route fol-

lowing a divergence point between �������� ��� and ���� �� ��.

�

In Figure 1: � is a computation point; and �� is a computa-

tion point following the divergence point ��. NN for �� is ��. ��

is also regarded as the NN for all the points on the sub-route of

�������� ��� from the previous divergence point �� (except ��

itself, its NN is ��) to the following divergence point ��. This is

because on the real road network we can branch off the route only

on cross-point.

3. 2 Path search regions

To solve the CNN problem, there are two main issues: one is

the selection of computation point on the route; and another is the

computation of NN for the computation point. Here, we give two

propositions on the road network for nearest object search.

[Proposition 1] For a source point � and a target object �, when the

length of a path from � to � is �, any target object which is nearer

-r/2 -d’/2
Oc t’

r/2d’/2

2
'22 dr −

2
'22 dr −−

X

Y

S

t
ta

tb

r

r

r-region p-region

(a) (b)

Figure 2 (a) Nearest target search region: r-region; (b) Shortest path search

region: p-region.

to � than � can only be found inside a circle region, denoted as r-

region, whose center is � and whose radius is r (Figure 2(a)). �

We leave the proof out in this paper, as it can be convinced by the

fact that any road segment outside r-region can only lead to a path

longer than � from �.

[Proposition 2] For two points � and � on the road network with

straight-line distance �, the test of whether there is a path shorter

than � from � to � can be based on a path search region, denoted

as p-region, the sum of the straight-line distance between any nodes

inside this region and � and that between this node and � is not

longer than �. �

For an easy description we define a coordinate for them in Figure

2(b):

�� ������ �

�� � !��
�

� � �"��� � !� �
�

� � �"��� � !� �� ���

The origin O of the coordinate is on the center of line ��, the

x-axis passes along line ��, and the y-axis is perpendicular to the

x-axis on the origin O. To find the shortest path from S to � is based

on the road segments inside the region (as the grey ellipse in Figure

2(b)). This means that if there is any path shorter than r from S to

� all the road segments on this path could only be found inside p-

region. The region can also be simplified to a rectangle with length

r and width
�
�� � ��.

4. k-CNN Search Method

The problem of k-CNN search which we address in this paper is

to find k-NN’s for any point along a specific route on a large road

network. k-NN’s are the first k target objects from the point on the

route on the sort of the shortest path length.

4. 1 Bounds of the shortest path length

Observe Figure 3: in 2-CNN search, 2-NN’s for the first compu-

tation point S are t and �� . To find 2-NN for the next computation

point c can take advantage of the previous computation, for exam-

ple at least t and �� can be regarded as 2-NN up to now, which are

with the possible longest paths from c: (����� � �����) and

(����� � ������). However, the real path length from c to them

may be varied. This is because there may be some shorter paths,

and the lower and upper bounds of the path length from # to � are

���� and ��	
 , which can be decided by

���� � ������ � ����� �� (1)

��	
 � ����� � ����� � (2)

and those for �� are:

����� � ������ � ������ �� (3)

��	
� � ����� � ������ � (4)

It means that � is a NN candidate for # with a possible path length

varied from ���� to ��	
 . The value of ����� has been computed

in the previous NN search step for �, and the value of ����� is the

curve length between c and q. Though �
��� is greater than �
��,

it can to say the path length to �� is long than that to t.

Based on Proposition 1, if r-region is decided for � with the

radius ��	
� , the target objects nearer than the up-to-now known

2-NN’s can be found only inside this r-region.

c

t’

S

Eta tb tc

tf

q

tg
rmin rmax

r

r-region

p-region

Figure 3 Search regions generated for a new computation point based on

NN of the previous computation point.

4. 2 Data structures for k-CNN search

The NN search process bases on the R-tree index and a priority

queue Queue [12]. Queue is used to record the intermediate results:

the candidate targets or the internal nodes of R-tree inside r-region.

The key used to order the elements on Queue is the straight-line

distance of R-tree node and the path length computed for target ob-

ject. Queue is initialized as a node of the R-tree, which overlaps

with r-region. When a target object turns on the head of the priority

queue, it becomes the candidate for further computation: the path

length is computed for the candidate based on the search region. If

the path length is smaller than the key of the head element of the

queue, the candidate is the result. Otherwise, when the path length

is smaller than the radius of search region, the search region is reset

with the new length as the radius. The value of radius is decreased

by keeping step with the ongoing path length computation for the

candidates, and the search region is adjusted until there is no candi-

date inside it.

In the process of searching k-NN’s for a computation point, the

priority queue can also be used. When an object with the computed

path length turns out on the head of the queue, the first (or the near-

est) neighbor is found. On the next time, the second (2-nearest)

neighbor will be returned. However, in the process of CNN search,

the priority queues for the computation points except the start point

on the route only record the nodes or objects with the shorter path

than r. In other words, it assures the objects found on the head of

queue are in order, but cannot assure that there are enough (here, k)

objects in the queue. To solve this problem, another data structure,

called k-queue, is adopted to keep the up-to-now k candidates and

distances (or distance bounds) for k-NN search. The greatest upper

bound of distance is regarded as a cutoff value for pruning nodes or

objects: a node or an object with a longer path is not inserted into

the priority queue, while there are at least k candidates kept in the

priority queue. k-queue is defined as a fixed length queue, where

� k is the number of nearest neighbors found for every point

on the predefined route. It is decided at the beginning of k-CNN

search, and be kept in the process of the search.

� The elements inside the queue are triplets� �� �
�	� �
�� �,

where � is a target object and �
�	 and �
�� are the lower and up-

per bounds of the path length from the current computation point

to �. If the real path length to � has been computed, then �
�	 and

�
�� are set as the same value. There are at most k elements in the

queue.

� The longest �
�� in k-queue is regarded as a cutoff value,

which is used to set r-region for pruning objects in the priority queue

Queue .

For the computation points on the route except the start point, the

contents of k-queue are initialized as: the k-NN’s of the previous

computation point. The lower and upper bounds of the path length

for every object recorded in the queue are �
�	 and �
��.

r2

c

t’

S

ta tb tc

t

tf

q

tg

rmax2

c1
rmin2

rmin1

rmax1
r1

Figure 4 There are lower and upper bounds of path length from the current

computation point to the previous k-NN’s.

For a 2-CNN search given in Figure 4, the 2-NNs for � are � and

�� , then the k-queue for c is like � �� �� 	 ��� ��� ��
 �. Which

means 2-NNs of c can only be found inside a r-region whose center

is c and radius is 4 (the upper bound of ��). Therefore, the $-NNs

for # can be found by testing the objects in the priority queue �����

and those inside k-queue.

Considering that, the distance between internal nodes of R-tree

is shorter than that between two objects inside the two nodes, and

the distance between the two objects is shorter than the path length

between the two objects on road network. The elements in k-queue

are on the order of path length, r-region and p-region are determined

by the path length, and the elements in the priority queue are sorted

on the three kinds of length. The loose condition for the test of tree

nodes becomes stricter and stricter for testing of distance between

objects and path length from one object to another.

4. 3 About p-region

Based on Proposition 2, to test whether the path length from # to

a candidate �� inside r-region is shorter than ��	
 can be based on

a p-region: the path length from the current computation point c to

NN of the previous computation point is ��	
 , and the straight-line

distance between c and the candidate node �
�

is �
�

. p-region for the

computation of the shortest path from # to �� is the white ellipse in

Figure 3.

5. Algorithm for k-CNN search on road network

The problem of k-CNN search along a specific route on road net-

work is to find out k-NN’s for any place on the route in order.

In the algorithm of NN-search, a Queue is used to record the

nodes in R-tree whose child nodes or referred objects are visited

in order of distance from the computation point. The Queue en-

sures an incremental generation of NN’s in distance order for one

computation point. However, to compute the k-NN’s for the next

computation point cannot be based on the NN of the current com-

putation point. So a new queue ������ is adopted to record the

first k-NN’s of a computation point. The k-queue, ������, is a

queue with fixed length of k. The algorithms for k-CNN search are

given in the following:

======================================

Algorithm k-CNN-search

�� Input: route [S, E], target object set T

Output: Result set of triples

�� ���� � ������� �� �����	
�� ������ � ��������� � �,...���

1. Initialize:

set first computation point: CP = S;

set NN search region for CP: r = Max;

initialize ����� as a queue with fixed length k;

2. Do steps 3 to 7 until CP equals to E;

3. Call k-NN-search with CP, r and ����� ; and get a triple of

� ���� � ������� �� ���� ��� ���������� � �������������� �;

4. Replace interval [CP, q] with [���� , q],

insert � ���� � ������� �� ������ ��� ���������� � ������������� � �

into Result set;

5. Generate next computation point CP:

CP = next intersection following q along route;

6. For i = 1 to k do

����� = �
���	
 + �
��
���;

����� = ��
���	
 - �
��
����;

insert (���, �����, �����) into ����� ;

7. Set k-NN search region for CP:

r = Max(�����);

======================================

The algorithm of k-CNN search calls k-NN search procedure to

find k nearest neighbors for the route. It starts from searching k-

NN’s for the start point of the route (step 1, and step 3), decides

the next computation points (step 5) based on the previous results,

adopts ������ to keep the up-to-now k-NN’s for the current com-

putation point (step 6),and last generates the search region parame-

ters (step 7) for new computation point. The loop from steps 3 to 7

stops after the search of k-NN for the end point of the route.

======================================

Algorithm k-NN-search

�� Input: route [S, E], target object set T;

source point CP, search region r and ����� ;

Output: a triple

� ���� � ������� �� �����	
�� ������ � ���� ����� � ���

1. Initialize priority queue Queue as the root of R-tree and result-number as 0;

2. Locate first node overlapping with region r

on R-tree, compute straight-line distance d between

it and CP, and insert node into Queue;

3. Do steps 4 to 5 unless Queue is Null or result-number is k;

4. If head of Queue is leaf node of R-tree,

Then for the object which with a shorter d in Queue

or a shorter ����� in ����� , do

(1) initialize p-region with Max(�����) for the object selected from Queue;

initialize p-region with its ���� for the object selected from ����� ;

(2) Call SP-search to compute shortest path SP

from CP to it,

(3) insert result to Queue and ����� ;

Else

(1) compute straight-line distance between them,

(2) insert result to Queue;

5. If head of Queue is leaf node with computed

shortest path

��object t of leaf node is NN for CP, computed path

�
���	� is shortest path from CP to t��

Find divergence q of �
���	� and route;

Insert triplets of ��� ��������
���	��� ��������
���	��� into ����� ;

result-number ++;

Reset r as length(�
���	�) of the tail element of ����� ;

6. Return result of k triples � �� ���� ��� �
���	� �

where � is inside ����� ;

======================================

The algorithm of k-NN search is an extension of NN-search al-

gorithm used in CNN search [8]. The Priority queue plays the same

role as that in CNN search. The k-queue (������) is used to keep

the up-to-now nearest neighbors for the current computation point

and the path length kept in the tail element of ������ is the cutoff

value of the following search. When the computation point is not

the start point of the route, a new object is inserted into ������ on

the order of the path length and the cutoff value is also updated after

every insertion (step 5). And so r-region and p-region are reduced

with the update: the cutoff value is set as the radius of r-region in

the following test.

The k-NN search stage ends when one of the following condi-

tions is satisfied: 1) Queue becomes empty (step 5), or 2)k or more

results have been returned (step 5). The cutoff value is initialized

as the greatest upper bound of objects in ������ and adaptively

corrected during the algorithm processing: in step 4 (3), by insert-

ing a new tested object into ������, the cutoff value may be also

updated. Because there are only k elements in ������, any can-

didate tested inside r-region leads to a longer path than the current

farthest object will not be inserted into ������. Furthermore, any

object with a shorter path length than the cutoff value is inserted

into ������, the element on the tail of ������ is dropped and the

cutoff value is reset as the new one. The search can be done in a

stepwise optimization way.

6. Conclusion

From a viewpoint of decreasing the times of disk access, we have

proposed a method for CNN search on the large hierarchical road

network by minimizing the search region. However, that method

cannot support a k-CNN search, which finds more nearest neighbors

than one. We adopt a fixed length queue for recording up-to-now in-

termediate results to solve this problem. Because the search regions

can be reduced stepwise based on the intermediate results, the k-

CNN search can be realized efficiently. Our method is based on the

premise of that the distance from one place to another on the road

network is the path length of them. And so the search regions can be

decided based on the path length, then the filtering condition in the

searching via hierarchical data structures can take advantage of it.

In ITS applications, CNN, k-NN or k-CNN search is usually based

on the travel cost, sometimes dynamical values, from one place to

another, and the travel cost may not be in direct proportion to their

path length or the straight-line distance. This problem cannot be

solved by the method proposed in this paper.

Acknowledgments

Our research is partly supported by the 21st Century COE (Center

of Excellence) Program for 2002, a project titled Intelligent Media

(Speech and Images) Integration for Social Information Infrastruc-

ture.

References
[1] G.R. Hjaltson and H. Samet: “Incremental Distance Join Algorithms

for Spatial Databases”, Proc.of ACM-SIGMOD, pp. 237–248 (1998).
[2] J. A. Orenstein: “A Comparison of Spatial Query Processing Tech-

niques for Native and Parameter Spaces”, Proc. of ACM-SIGMOD,
pp. 343–352 (1990).

[3] H. Shin, B. Moon and S. Lee: “Adaptive and Incremental Process-
ing for Distance Join Queries”, IEEE Trans. on Knowledge and Data
Engineering, Vol. 15, No. 6, pp. 1561–1578 (2003).

[4] J. Feng and T. Watanabe: “Search of Continuous Nearest Target Ob-
jects along Route on Large Hierarchical Road Network”, Proc. of
Data Engineering Workshop (2003).

[5] Y. F. Tao, D. Papadias and Q. M. Shen: “Continuous Nearest Neigh-
bor Search”, Proc. of VLDB’02, pp. 287–298 (2002).

[6] Z. X. Song and N. Roussopoulos: “K-Nearest Neighbor Search for
Moving Query Point”, Proc. of SSTD’01, pp. 79–96 (2001).

[7] S. Bespamyatnikh and J. Snoeyink: “Queries with Segments in
Voronoi Diagrams”, SODA (1999).

[8] J. Feng and T. Watanabe: “A Fast Method for Continuous Nearest
Target Objects Query on Road Network”, Proc. of VSMM’02, pp.
182–191 (2002).

[9] E. H. Jacox and H. Samet: “Iterative spatial join”, ACM Trans.
Database Syst., Vol. 28, No. 3, pp. 230–256 (2003).

[10] D. H. Lee and H. J. Kim: “An Efficient Technique for Nearest-
Neighbor Query Processing on the SPY-TEC”, IEEE Trans. on
Knowledge and Data Engineering, Vol. 15, No. 6, pp. 1472–1486
(2003).

[11] G.R. Hjaltson and H. Samet: “Distance Browsing in Spatial
Databases”, ACM Transactions on Database Systems, Vol. 24, No. 2,
pp. 265–318 (1999).

[12] J. Feng and T. Watanabe: “A Fast Search Method of Nearest Target
Object in Road Networks”, Journal of the ISCIE, Vol. 16, No. 9, pp.
484–491 (2003).

