
DEWS2004 I-6-01

ユー ザ カ スタ マ イズ可 能な 画 像検索の ため の ナ ビ ゲ ー シ ョ ン 構造

ルワゾ ン ・ エ ルワン †,†† 石川博† マ ルチ ネ ー ズ・ ジ ョ ゼ †† 太田学† 片山薫†

†東京都立大学大学院工学研究科
†† ナ ン ト 大学エ コー ル・ ポ リ テ クニ ッ ク（ 仏）

E-mail: †erwan@hiver.eei.metro-u.ac.jp, ††{ishikawa,ohta,katayama}@eei.metro-u.ac.jp,
†††jose.martinez@polytech.univ-nantes.fr

User-Adaptative Navigation Structures for Image Retrieval

Dynamic Galois’ Sub-lattices

Erwan LOISANT†,††, Hiroshi ISHIKAWA†, José MARTINEZ††, Manabu OHTA†, and Kaoru
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Abstract Navigation is along with similarity search and feedback querying one of the main approaches studied to query

image databases. Galois’ (concept) lattices have shown to be a convenient navigation structure for visualization while operat-

ing a simple classification. However, if the n2 complexity of the lattice construction algorithm allows to reach about 10,000

images, experiments showed that after a few hundreds of images the number of children and parents for a given node is likely

to increase and to lead to user confusion. In order to make it easy to browse a large lattice, we propose a technique to hide some

sets of images and some links between them according to information users give on which kind of images may be relevant.

We introduce a linear complexity algorithm to define a sub-lattice that will still respect the lattice axioms and thus will remain

an acceptable navigation structure. The result is a user-adaptative, usage-adaptative and cheap-to-build structure showing only

most relevant images and links, thus increasing usability.
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1. Introduction

Unlike classical textual data that can easily be stored to and re-

trieved from a relational database management system (RDBMS)

or object-oriented database management system (OODMBS), mul-

timedia data (like video or sound) can not be normalized [14]. These

kind of data contain a variable density of information, moreover in-

formation depends on the observer and the context. Image is one of

most studied multimedia data; if first image retrieval systems were

based solely on external annotation, rely on human annotation is

limited: not only manual annotation is very costly, but it remains

a subjective annotation. Two annotators will produce a different

annotation on the same image, even the same annotator would pro-

duce different annotations if he is asked to annotate the same image

at different times.

Consequently content-based image retrieval (CBIR) systems ap-

peared using information automatically extracted from content.

First CBIR used concepts from RDBMS and OODMBS to query a

database containing content-based information [7], [8]. Describing

an image using content-based information being particularly diffi-

cult for non-expert user, similarity based querying and relevance-

feedback querying [10], [13] appeared. Instead of asking user for

a query, the system infers it from examples and counter-examples.

It was a improvement over querying but inferring algorithms were



usually costly non-deterministic algorithms. Finally, navigation-

based retrieval aimed at producing a very user-friendly and fast re-

trieval system, yet loosing precision over query-based retrieval [15],

[9]. Now, research is still done in these three approaches that are

complementary.

Navigation threw a before-hand calculated structure has shown

good results: it provides a fast and intuitive way to retrieve infor-

mation from an image collection. However, each user has his own

goal while looking for an image, and different goals should have

different structures to optimize retrieval.

In this paper, we propose to apply masks on navigation struc-

tures; that means hide parts of the graphs or connections to dis-

play a subgraph closer to user’s expectation, taking user’s needs

and specificities into account. This is done by keeping an under-

lying common structure to all users and all retrieval processes, con-

sequently keeping the advantages of a before-hand calculated struc-

ture: the most costly processes are done before-hand, and retrieval

itself is fast and reactive. This results in improving our existing

prototype called ClickImAGE by adding user customization with-

out denying the performances advantages. Our proposal is conse-

quently more efficient than system based on feed-back querying or

similarity search, and more relevant than system based solely on a

pre-calculated structure.

First, in section 2., we present the intrinsic information we ex-

tract from images to describe them. In section 3. we give a quick

introduction on Galois’ Lattices, then in Section 4. we propose a

general scheme for applying masks on a particular navigation struc-

ture based on Galois lattice. Finally in section 5. we propose a

masking techniques based on this scheme.

2. Meta-data representation

There are several data to take care of in order to organize ade-

quately an image database [1]. The standardization effort of MPEG-

7 [11], [12] separates:

（ 1 ） format information (stereo for audio, infra-red for im-

age. . . ),

（ 2 ） physical information (sound energy, main colors. . . ),

（ 3 ） perceptual information (male voice, hot colors. . . ),

（ 4 ） structural information (splitting a video into planes, an im-

age into regions. . . ),

（ 5 ） intrinsic meta-data (keywords. . . ), and

（ 6 ） miscellaneous annotations.

Our study focuses on structural information and physical infor-

mation: a general segmentation of image and dominant colors on

these parts. Some studies also work on shape information, but

we consider algorithmic complexity of segmentation algorithms too

costly. Moreover, color gives a good semantic information [3].

2. 1 Color models
Color is know to be a tri-dimensional parameter, however several

models exist.

For computer image manipulation, technical color models like

RGB or CMYK are preferred. Those models reflect the way pixel’s

colors are produced by the rendering device. Those technical mod-

els however are not suitable for human intuitive color representa-

tion. The pink color for instance is not easy to describe in term of

red, green and blue combination. More accurate models, also said

perceptual models are then used. The first of those models was pro-

posed by A.H. Munsell in 1915.

The HSV color model, used in this work, is recognized to be one

of the most perceptually evident for users [4]. HSV stands for Hue,

Saturation and Value. All those components are immediately under-

standable as they reflect the way artists compose their color: they

first choose the Hue of the color from different tubes, next they set

the saturation by adding white and finally set the value by adding

some black. In this model pink is seen as a red Hue with some white

in it to decrease its saturation. In the HSV space, this description is

represented by the vector pink = 〈0.0, 0.3, 1.0〉, with:

• pink.Hue = 0.0: hue is defined, on the chromatic circle, as

an angle in [0, 2π] where 0 means red;

• pink.Saturation = 0.3: the saturation scale ranges from 0

to 1;

• pink.V alue = 1.0: the value is defined on [0, 1].

2. 2 Zone color characterization
Color perception results from the juxtaposition of individual pix-

els. The perceived color of an arrangement of pixels ranges from

uniform pure color to complex color arrangement without dominat-

ing color.

Considering our linguistic representation of colors, each pixel

color is expressed in terms of color labels with different weights.

For a pixel, the weight is the membership degree of its color to the

fuzzy set associated to a color label. For instance, in our paradigm

of representation, a pink pixel could be defined as two color labels:

• vivid bright red with a membership degree of 0.1;

• dull bright red with a membership degree of 0.9.

Considering a region S as a collection of adjacent pixels, the rel-

ative importance τS(d) of a color label d inside S, is computed as

the sum of membership degrees µd(p) of each pixel:

τS(d) =

X

p∈S
µd(p)

X

d′∈D

X

p∈S
µ′d(p)

, (1)

with D the set of all color labels.

For the need of Galois’ lattices (further described in section 3.),

the properties have to be keywords. Thus, we make this relationship

binary be considering a color present is its relative is above a certain

threshold experimentally fixed.

2. 3 Segmentation
An image segmentation is used to allow a more accurate descrip-

tion of image colors. Considering general photographic pictures,

the main subject often stands in the center and the surrounding ar-



図 1 Five parts segmentation

eas represent the image background. In a landscape picture for in-

stance, the sky is likely to have blue or gray hues, while the ground

will probably be green. In our tests, we used a five zone segmenta-

tion. The center zone covers 49% of the total surface and the four

surrounding zones are trapezoids whose wideness is 15% of the im-

age wideness.

Figure 1 shows an example image of Kamakura’s Big Buddha.

Using a discrete description of the colors (a color being simply

present or not), this image would be represented using the following

properties:

• light vivid blue top

• light unsaturated yellow center, dark unsaturated red center

• light vivid blue left, dark saturated green left, black left

• light vivid blue right, dark saturated green right, black left

• black bottom

The top part shows trivial results: since the upper part is mainly

made of sky, there is no surprise it is blue and will consequently

be classified with other pictures featuring a clear blue sky. The left

and right parts also give expected results, as well as the bottom part

which is quite dark.

The result of the center part may be more surprising: it does not

look red and yellow. However, the Big Buddha being made of cop-

per, it is actually its color. It does not look red to a human observer

because the saturation is low, but the light unsaturated yellow rep-

resents the less oxidized parts while the dark unsaturated red repre-

sents the more oxidized parts. It will not make sense for users, but

these colors being representative of copper, other copper construc-

tions will be classified close to the Big Buddha photograph.

3. Galois’ Lattices

This part gives a quick introduction to Galois’ lattices, mainly to

precise axioms that we will have to respect while applying filter on

it and to introduce notation that will be used later. Interested reader

may refer to [9] where Galois’ lattices applied to image retrieval are

blackbottom yellowcenter redtop

img1 1 1 0

img2 1 0 0

img3 0 1 1

img4 0 1 0

img5 0 0 0

図 2 A binary relationship

detailed.

A Galois’ (or concept) lattice is a mathematical structure that has

been largely exploited in the field of knowledge discovery [5]. It can

be defined whenever there is a binary relation, in our case between

images and their associated meta-data:

R : I × D (2)

where I is the set of images, and D is a set of descriptions. Note

carefully that a Galois’ lattice can be defined only over discrete do-

mains. Also, meta-data descriptions vary from application to appli-

cation. They can be related to the intrinsic content of the images,

e.g., colour, or they can add some semantics to them, e.g., through

mere keywords.

A lattice being a directed acyclic graph featuring a minimal node

(inf ) and a maximal node (sup), a Galois’ lattice is a special kind

of lattice derived from a binary relation.

Each node of this graph groups a set of instances, i.e., an ex-

tension, and a set of descriptions, i.e., an intention. From R, one

derives the Galois’ connection between I and D, which consists in

two dual functions, or point of views on R:

r : I → 2D

i 7→ {d ∈ D|(i, d) ∈ R}
(3)

r′ : D → 2I

d 7→ {i ∈ I|(i, d) ∈ R}
(4)

Intuitively, r gives the description of each image, i.e., its associ-

ated meta-data. In contrast, r′ gives images featuring a given prop-

erty.

The resulting graph is oriented according the following partial

order:

S : (2D × 2I)
2 → {0, 1}

((X1, X
′
1), (X2, X

′
2)) 7→ (X1 ⊂ X2)

V
(X ′2 ⊂ X ′1)

(5)

The inf node and the sup node are also defined according this

partial order: the inf node will be the smallest property set associ-

ated to the largest image set, and the sup node will be the largest set

of property set associated to the smallest image set.

is insufficient to provide a fine description of various classes of

images. Hence, a class extension is defined as:

c : I → 2I

i 7→ {i′ ∈ I|r(i′) = r(i)}
(6)



{(black bottom, yellow centre, red top),()}

{(yellow centre, red top),(img3)}

{(yellow centre),(img1,img3,img4)}{(black bottom),(img1,img2)}

{(black bottom, yellow centre),(img1)}

{(),(img1,img2,img3,img4,img5}

図 3 A simple example of an image lattice

Intuitively, we are interested in the set of images that share exactly

the same description, and moreover at least the same description.

The problem of updating a Galois’ lattice is not trivial, since it

is necessary to generate not only the new pairs and its connections

but usually several other pairs needed to respect the Galois’ lattice

definition. [5] proposes an incremental algorithm that has an expo-

nential complexity in the worst case. However, in most case we

experience a linear complexity for adding one instance.

A Galois’ lattice will be noted (N , E), where N is a set of nodes

and E a set of oriented edges.

Figure 3 shows a simple example of the Galois’ lattice derived

from the binary relationship from figure 2

4. Masking lattices

The time complexity of the Galois’ lattice construction algorithm

being experimentally o(n2) [5], it allows to reach a size of 10,000

instances [9]. In this case, a node explosion can happen and the path

to the wanted image may be long. Moreover, if descriptions are ran-

domly distributed on the image set, the number of edges can be very

important and lead to confusion when user is to choose between too

many children nodes.

In order to reduce the number of node by hiding only non-relevant

one, and by limiting processing time, we propose to take the original

Galois’ lattice as a base to apply a mask.

A mask is a filter applied to a given Galois’ lattice to hide ele-

ments, that can be nodes or links. It should be noted that while the

resulting graph may not be a Galois’ lattice since it will not repre-

sent a binary relation between two sets, it has to be a lattice. Since

user will browse a direct representation of the resulting graph, every

lattice axiom is mandatory to ensure that this browsing will allow

user to reach every non-masked image in a natural navigation path.

4. 1 Formalization
Different kinds of masking serve different goals. For example,

one may want to reduce the cardinal of the images set or the cardinal

of the description set. However, any kind of masking is represented

in the same way.

［ Definition 1］ Given a lattice (N , E), a lattice mask M is defined

as M = (NM , EM , EA, NMe) where NM ⊂ N , EM ⊂ E , EA ⊂
N 2 and NMe ⊂ NM

2. Also, NMe is such as ∀(N1, N2) ∈ FM ,

N1 is a father node of N2.

NM represents the set of nodes to be masked,EM the set of edges

to be masked, EA the set of edges to be added and NMe the set of

pair of nodes to be merged.

5. Masking techniques

In this section, we present two kind of filtering, both with differ-

ent goals: node masking and edge masking. Node masking consists

in masking some set of images if the system already have informa-

tions about what kind of images are relevant to current retrieval and

which images are not. Applying such a filtering will result in hid-

ing complete nodes to user if most of its members are irrelevant to

current search. On the contrary, edge masking consists in masking

links if the relation represents a description irrelevant for this search.

Both masking technics results in masking both nodes and edges.

However, we call “node masking” a masking where we want to

mask nodes (to mask edge being a consequence) and “edge mask-

ing” a masking where we want to mask edge (to mask node being a

consequence).

5. 1 Node masking
The system operates a node masking when it has gathered infor-

mations about what kind of images user is looking for, enough to

reduce the number of images to propose but not enough to give user

a final result. Node identified as irrelevant to current retrieval should

be masked.

A node masking operation is defined by a node filtering function

f on nodes:

f : N → {0, 1}

The selection of nodes to mask is done by asking user for exam-

ples of images to be masked, and inferring an approaching query.

To ensure good performance, a low-complexity algorithm is chosen

over better but high-complexity algorithms used in systems mainly

based on relevance feedback.

Algorithm

Considering a node filtering function f and a Galois lattice

G = (N , E), we note NF = N ∈ N|f(N) = 0 the set of nodes

to mask. The following gives a algorithm to determine a mask

M = (NM , EM , FM ) that applied to G will result in a lattice ac-

cording to section 3..

Nm <- Nf \ {min(G), max(G)};

FORALL n in Nm:

FORALL e connecting n:

add e to Em;

FORALL p, parent node of Nf:

CASE cardinal(non_masked_children(p)):

0: FORALL c, child of Nf:

add (p, c) to Ea;



1: IF c, unique children of p

has no other parent:

add (p, c) to Fm; add (p, c) to Em;

else: nothing

FORALL c, children node of Nf:

CASE cardinal(non_masked_parent(c)):

0: FORALL p, parent of Nf:

add (p, c) to Ea;

1: IF p, unique parent of c

has no other child:

add (p, c) to Fm; add (p, c)to Em;

else: nothing

Actually, this algorithm performs the following operations:

• The set of nodes to mask will be equal to the set of nodes

defined by the filtering function, except that the minimum and max-

imum nodes can not be masked,

• any edge connected to a masked node will be masked,

• if a node other than min(G) ends with no parent, it should

be connected to all parent of its last former parent

• if a node other than max(G) ends with no child, it should

be connected to all child of its last former child

• if a node ends with a unique child and this child has a unique

parent, these nodes should be merged,

• if a node ends with a unique parent and this parent has a

unique child, these nodes should be merged.

The complexity of this algorithm depends on the number of nodes

to mask, and the average number of parents and children a node can

have. Experimentally, we noticed that this number does not exceed

a certain maximum. Indeed, since the low-level properties are corre-

lated regarding their semantic meaning, we noticed that the number

of children for a given node doesn’t reach the number of properties

but is at worst 25% it. Thus, we conclude that this algorithm has an

empiric linear complexity according the number of nodes to mask,

i.e. o(n). This complexity is acceptable regarding the number of

nodes to consider.

If a node had more than one parent, and all of them are masked in

the process, then the result will depend on the last node masked by

the algorithm. Since the order to process nodes is arbitrary chosen,

this algorithm is not deterministic. However, parent nodes sharing

all the same role, we do not see that point as a issue. There is a

symmetric problem when masking children.

5. 2 Edge masking
While node masking aims at changing the content to show to user,

the goal of edge masking is to change the link between elements to

match user’s needs. Several ways can be considered to gather infor-

mation about and decide which properties may be less relevant to

user: analyse user’s way of navigating throw the structure, explic-

itly ask for properties to be ignored, etc.

For example, a user navigating throw the system may be not in-

terested in the color of the upper part of the image. Thus, links be-

図 4 Current browsing graphical interface

tween nodes related to this information will be considered as noise

and masking them would improve relevance of the navigation re-

sults.

Our research about edge masking is still in progress, and to com-

plete node masking in a middle term.

6. Implementation and Evaluation

Our prototype can be divided into two parts: (1) the before-hand

structure calculation, which results in a set of XHTML [2] pages

directly readable by a standard-compliant web browser and (2) the

customization system, implemented as a browser extension operat-

ing client-side processing using ECMAScript [6]. The second part

is still in development. Figure 4 shows a screenshot of browsing a

navigation structure using a web browser. The center part is a view

of current node, while the higher and lower part are respectively the

fathers nodes and the children nodes. By clicking in the lower or

higher part in the set of images she likes, the user can respectively

specialize or generalize her query.

Evaluation
After achieving implementation work, an evaluation protocol is

to be applied. Several sets of images will be prepared, and metrics

will be calculated.

The characteristics of the different sets of image will vary: (1)

randomly distributed sets and sets containing several homogeneous

subsets (such as sunset, nature images, urban images, different

views of the same object), and (2) small sets (a few hundreds of

images) and large sets (a few thousands of images). Having homo-

geneous subsets should give better results, but randomly distributed

sets can appear in a real world so should not be excluded.

Working on these sets, we will compare the navigation structure

obtained without customization (corresponding to previous work) to

a structure customized from one to three times. Metrics will include

• number of image per nodes,

• average number of children of a node

• and shortest path from the inferior node to the superior node.

For all of these metrics, a small value is considered as better since it



reduce user’s disorientation.

We expect that each customization iteration greatly improves the

system, and that a lattice featuring several thousands of images dif-

ficult to browse without customization can become usable with cus-

tomization.

7. Conclusion

In this paper we presented a technique to ease navigation through

a large Galois’ lattice. Using a before-hand calculated structure and

applying to it a linear complexity algorithm, we ensure to keep bet-

ter performances than relevance feedback or similarity query. Ex-

perimentation is still to be done, however we expect that this tech-

niques greatly improves user’s experience by reducing (1) the num-

ber of images simultaneously displayed on the screen (2) the links

he has to choose to specialize or generalize the query.

Further work will include developing new masking methods on

the same framework, that would not focus on which images should

be masked but which concepts, or links between images.
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