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Abstract Outlier detection has many applications like fraud detection, medical analysis, etc. Recently, several methods for

finding outliers in large datasets have been reported. These existing techniques traditionally detect based on some prescribed

definitions of outliers. However, it is very difficult for a user to decide the definition of outliers in prior. Usually, they have

a few outlier examples in hand, and want to find more objects just like those examples. To solve this problem, we propose

a novel method to detect outliers adaptive to users’ intensions implied by the outlier examples. This is, to the best of our

knowledge, the first that detect outliers based on user-provided examples. Our experiments on both synthetic and real datasets

show that the method has the ability to discover outliers that match the users’ intentions.
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1. Introduction

Outlier detection has many applications like fraud detection,

medical analysis, etc. Methods for finding outliers in large datasets

are drawing increasing attention.

Intuitively, an object is an ”outlier” or ”abnormal” if it is in some

way ”significantly different” from its ”neighbors”. Different an-

swers to what constitutes a ”neighborhood”, how to determine ”dif-

ference” and whether it is ”significant” would lead to various sets

of objects defined as outliers.

There have been various interpretations of the notion of the out-

lier (e.g., distance-based [9], density-based [3], etc.) in different sci-

entific communities. Consequently several approaches have been

proposed. As we can see, not everyone has the same idea of what

constitutes an outlier.

For easy understanding, let us see a concrete example shown in

Figure 1. In this data set, there are a large sparse cluster, a small

crowded one and some obviouly isolated objects. When we look

from a wide scale, only the isolated objects (circle dots) should be

regarded as outliers because their neighborhood densities are very

low compared with objects in eithor the large or the small cluster.

However, when we consider the neighborhood of a middle scale,

objects fringing with the large cluster (diamond dots) can also be

regarded as outliers. Furthermore, objects fringing with the small

cluster (cross dots) become outliers when we focus on neighbor-

hood of a small scale. This illustrate that different sets of objects

should be regarded as outliers if we consider from different scale of

neighborhood.

In most circumstances, users are experts in their problem domain

and not in outlier detection. It is very difficult for a user to decide

the definition of outliers in prior. Usually, they have a few outlier
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Figure 1 Illustration of different kinds of outliers in a dataset.

examples in hand, which may “describe” their intentions and want

to find more objects that exhibit “outlier-ness” characteristics just

like those examples.

However, to the best of our knowledge, none of the existing meth-

ods can directly incorporate user examples in the discovery process.

We present here a novel method that detects outliers adaptive to

users’ intensions implied by the outlier examples.

The remainder of the paper is organized as follows: In section 2,

we discuss related work on outlier detection. In section 3, we dis-

cuss the measurement of “outlier-ness” and the different properties

of outliers. Section 4 presents the proposed method in detail. Sec-

tion 5 reports the experimental evaluation on both synthetic and real

dataset. Finally, Section 6 concludes the paper.

2. Related Work

In essence, outlier detection techniques traditionally employ un-

supervised learning processes. The several existing approaches can

be broadly classified into the following categories: (1) Distribution-



based approach, [10], [14]. (2) Depth-based approach. [13]. (3)

Clustering approach. [1]. (4) Distance-based approach. [3], [4],

[12]. All of the above approaches regard being an outlier as a binary

property. They do not take into account both the degree of ”outlier-

ness” and where the ”outlier-ness” is presented. (5) Density-based

approach, [9]. They introduced a local outlier factor (LOF) for each

object, indicating its degree of “outlier-ness.” When the value of

the parameter MinPts is changed, LOF can be estimated in different

scopes. (6) LOCI. We proposed the multi-granularity deviation fac-

tor (MDEF) and LOCI in [11]. MDEF measures the “outlier-ness”

of objects in neighborhoods of different scales. LOCI examines the

MDEF values of objects in all ranges. Even though the definition of

LOF and MDEF can capture “outlier-ness” in different scales, these

difference of scales were not taken into account.

Another outlier detection method was developed in [8], which fo-

cuses on the discovery of rules that characterize outliers, for the

purposes of filtering new points later.This is a largely orthogonal

problem. Outlier scores from SmartSifter are used to create labeled

data, which are then used to find the outlier filtering rules.

In summary, all the existing methods are designed to detect out-

liers based on some prescribed criteria for outliers. This is the first

proposal for outlier detection using user-provided examples.

3. Outlier-ness

In order to understand the users’ intentions and the “outlier-

ness” they are interested in, a first, necessary step is measuring

the “outlier-ness.” We employ the multi-granularity deviation fac-

tor (MDEF) [11] for this purpose, which is capable of measuring

“outlier-ness” of objects in the neighborhoods of different scales

(i.e., radii).

Here we describe some basic terms and notation. Let the � -

neighborhood of an object �� be the set of objects within distance �

of �� . Let ���� � ��� and ���� � �� be the numbers of objects in the

�� -neighborhood (�������� �	��
���
��� ) and � -neighborhood

(
������� �	��
���
��� ) of �� respectively.(1) Let ����� � � � �� be

the average, over all objects � in the r-neighborhood of �� , of

���� �� ��.

Definition (MDEF). For any �� , � and �, the����� � ����������� �	������� ������

����� � at radius (or scale) � is defined as follows:

���� ��� � � � �� �
����� � � � ��� ���� � ���

����� � �� ��
(1)

Intuitively, the MDEF at radius � for a point �� is the relative

deviation of its local neighborhood density from the average local

neighborhood density in its � -neighborhood. Thus, an object whose

neighborhood density matches the average local neighborhood den-

sity will have an MDEF of 0. In contrast, outliers will have MDEFs

far from 0.

In our paper, the MDEF values are examined (or, sampled) at a

(1): In all experiments, � � ��� as in [11].
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Figure 2 Illustrative dataset and MDEF plots.

wide range of sampling radii �, ���� � � � ���� , where ���� is the

maximum distance of all object pairs in the given dataset and ����

is determined based on the number of objects in the � -neighborhood

of �� . In our experiments, for each �� in the dataset, ���� for �� (de-

noted by ������ ) is the distance to its 20-th nearest neighbor. This is

a reasonable choice which effectively avoids introduction of statis-

tical errors in MDEF estimates in practice.

To better illustrate MDEF, we give some examples. Figure 2

shows a dataset which has mainly two groups: a large, sparse clus-

ter and a small, dense one, both following a Gaussian distribution.

There are also a few isolated points. We show MDEF plots for four

objects in the dataset.

� Consider the point in the middle of the large cluster, NM

(box dot), (at about � � ��, � � ��). The MDEF value is low

at all scales, indecating that the object can be always regarded as a

normal object in the dataset.

� In contrast, for the other three objects, there exist situations

where the MDEFs are very large, some times even approaching

1. This shows that they differ significantly from their neighbors

in some scales.

Even though all three objects in Figure 2 can be regarded as out-

liers, they are still different, in that they exhibit “outlier-ness” at

different scales.

� The outlier in the small cluster, SC (cross dot), (at about

� � ���, � � ���), exhibits strong “outlier-ness” in the scale

about � � �.

� On the other hand, the outlier of the large cluster, LC (circle



Input:

Set of outlier examples: �

Fraction of outliers: �

Dataset: �

Output:

Outliers like examples

Algorithm:

// Feature extraction step:

For each �� � �

For each � (� � � � �)

Compute MDEF value ���

// Classification step:

��� := �

��� := strongest negatives

� := �

Do �

� � := �

SVM := construct SVM (���,��	)

(� 
 � ) := SVM.classify (�)

��� := �

� while (�� � � � � ��� and �� � �� ����)

return ��

Figure 3 The overall procedure of the proposed method

dot), (at about � � 	�, � � 
	), exhibits strong “outlier-ness” in

the range from � � �� to � � ��.

� For the isolated outlier, OO (diamond dot), (at about � �

���, � � ���), its MDEF value stays at 0 up to almost � � ��,

indicating that it is an isolated object. Then, it immediately displays

a high degree of “outlier-ness.”

4. Proposed Method

The proposed method detects outliers based on user-provided ex-

amples and a user-specified fraction of objects to be detected as out-

liers in the dataset. The method performs in two stages: feature

extraction step and classification step.

4. 1 Feature Extraction Step

The purpose of this step is to map all objects into the MDEF-

based feature space, where the MDEF plots of objects capturing the

degree of “outlier-ness,” as well as the scales at which the “outlier-

ness” appears, are represented by vectors. Let � be the set of ob-

jects in the feature space. In this space, each object is represented

by a vector: �� � ����� ���� � � � � ����� �� � � , where ��� �

���� �	�� �� � ���� � � 
 � �� �� � ����������� �� �� �

����, �� � �����
�


 � ��.

4. 2 Classification Step

After the user-provided examples, as well as the entire, unlabeled

dataset are mapped into feature space, the next crucial step is to find

an efficient and effective algorithm to discover the “hidden” outlier

concept that the user has in mind.

We use an SVM (Support Vector Machine) classifier to learn the

“outlier-ness” of interest to the user and then detect outliers which

match this. Traditional classifier construction needs both positive

and negative training data. However, it is too difficult and also a

burden for users to provide negative data.

However, the proposed algorithm addresses this problem and can

learn only from the examples and the unlabeled data (i.e., the rest

of the objects in the dataset). The algorithm uses the marginal prop-

erty of SVMs. In this sense, it bears some general resemblance to

PEBL [5], which was also proposed for learning from positive and

unlabeled data. However, in PEBL, the hyperplane for separating

positive and negative data is set as close as possible to the set of

given positive examples. In the context of outlier detection, the pos-

itive examples are just examples of outliers, and it is not desirable to

set the hyperplane as in PEBL. The algorithm here decides the final

separating hyperplane based on the fraction of outliers to be de-

tected. Another difference from PEBL is that strong negative data

are determined taking the characteristics of MDEF into considera-

tion.

The classification step consists of the following five sub-steps.

Negative training data extraction sub-step All objects are sorted

in descending order of �
�������. Then, from the objects at the

bottom of the list, we select a number of (strong) negative training

data equal to the number of examples. Let the set of strong negative

training data be NEG. Also, let the set of examples be POS.

Training sub-step Train a SVM classifier using POS and NEG.

Testing sub-step Use the SVM to divide the dataset into the pos-

itive set P and negative set N.

Update sub-step Replace NEG with N, the negative data obtained

in the testing sub-step.

Iteration sub-step Iterate from the training sub-step to the updat-

ing sub-step until the ratio of the objects in P converges to the frac-

tion specified by the user. The objects in the final P are reported to

the user as detected outliers.

Figure 3 summarizes the overall procedure of the proposed

method.

5. Experiments

In this section, we describe our experimental methodology and

the results on both synthetic and real data. The results illustrate the

variousness for users’ intensions and also demonstrate the effective-

ness of our method.

5. 1 Experimental procedure

Our experimental procedure is as follows:

( 1 ) To simulate interesting outliers, we start by select-

ing objects which represent “outlier-ness” at some scales under

some conditions, for instance,
�

	
����	 � �
�	� ����	 � �	�,

where ����	 � �
�	� ����	 � �	� stands for the condition that

(��� ����	 �	) for some 
 such that ���	 � 
 � �
�	 , where

����	 could be either “�” or “�”.



( 2 ) Then, we randomly sample �% of the outliers to serve as

examples that would be picked by a user,(2) and “hide” the remain-

ders.

( 3 ) Next, we detect outliers using the proposed method.

( 4 ) Finally, we compare the detected outliers to the (known)

simulated set of interesting outliers. Evaluations are based on pre-

cision/recall measurements:

��	��
��� �

 �� ����	�� ��
����	 ��	�������



 �� ��
����	 ��	�������

(2)

�	���� �

 �� ����	�� ��
����	 ��	�������



 �� ��
����	 ����
(3)

We use the LIBSVM [7] implementation for our SVM classifier.

In all experiments, we use polynomial kernels and the same SVM

parameters(3). Therefore, the whole processes can be done automati-

cally.

5. 2 Datasets and Sets of Interesting Outliers

We do experiments on three synthetic and one real dataset to eval-

uate the proposed method. Table 1 shows the descriptions of all

datasets.

Table 1 Description of synthetic and real datasets.

Dataset Description

Uniform A 6000-point group following an uniform distribu-

tion.

Ellipse A 6000-point ellipse following a Gaussian distribu-

tion.

Mixture A 5000-point sparse Gaussian cluster, a 2000-point

dense Gaussian cluster and 10 randomly scattered

outliers.

Medical Offered by PKDD’99 Discovery Challenge [6], 7950

GPT and GLU examinations of patients in Chiba Uni-

versity hospital.

Table 2 shows all the sets of interesting outliers along with the

corresponding discriminants used as the underlying outlier concept

in our experiments. In the table, for instance, the discriminant ( 1,

40, �, 0.9 ) means that objects are selected as interesting outliers

when their MDEF values are greater than 0.9 in the range of radii

from 1 to 40. The number of interesting outliers is also shown in

Table 2.

We always randomly sample 10% (� � ��) of the interesting

outliers to serve as user-provided examples and “hide” the rest. De-

tected interesting outliers are those returned by the classifier.

5. 3 Experimental Results

Uniform dataset Figure 4 shows the outliers detected by our

method on the uniform dataset. Although one might argue that no

objects from an (infinite!) uniform distribution should be labeled as

(2): In all experiments, � � ��.

(3): For the parameter C (the penalty imposed on training data that fall on the wrong

side of the decision boundary), we use 1000, i.e., a high penalty to mis-classification.

For the polynomial kernel, we employ a kernel function of ���
� � � ���.

outliers, the objects at the fringe or corner of the group are clearly

“exceptional” in some sense. On the top row, we show the interest-

ing outliers, outlier examples supposed to be picked by users and the

detected results for case U-Fringe. The bottom row shows those for

case U-Corner (see Table 2 for a description of the cases). Note that

the chosen features can capture the notion of both “edge” and “cor-

ner” and, furthermore, the proposed method can almost perfectly

detect outliers adaptive to these various intensions implied by the

different users’ examples!

Ellipse dataset We simulate three kinds of interesting outliers for

the ellipse data set: (i) the set of fringe outliers whose MDEF values

are examined at a wide range of scales, (ii) those mainly spread at

the long ends of the ellipse which display outlier-ness in two ranges

of scales (from 15 to 25 and from30 to 40), and (iii) mainly in

the short ends, which do not show strong outlier-ness in the scales

from 35 to 40. The output of the proposed method is shown in

Figure 5. Again, the features can capture several different and in-

teresting types of outlying objects and the proposed method again

discovers the underlying outlier notion!

Mixture dataset Here we also mimic three categories of interest-

ing outliers: (i) the set of outliers scattered along the fringe of both

clusters, (ii) those maily spread along the fringe of the large sparse

cluster, and (iii) those mainly in the small dense cluster. The results

of detection are shown in Figure 6.

Medical dataset In the real medical dataset, we mimic two kinds

of intention for outliers: The first group (case M-Sector) is the set of

outliers scattered along the sector part of the whole dataset. These

objects display a high degree of ”outlier-ness” when we examine

from a wide scale. The second group of outlying objects (case M-

Origin) are those who concentrate around the origin. They are dis-

covered when we focus into small scales. The results of detection

are shown in Figure 7.

For all datasets, Table 3 shows the precision and recall measure-

ments for the proposed method, using polynomial kernels. It also

shows the number of iterations needed to converge in the learning

step. In Table 3, all the measurements are averages of ten trials.

In almost all cases of synthetic datasets, the proposed method

detects interesting outliers with both precision and recall reaching

80–90%. In the cases of the real medical dataset, the two measure-

ments are a little worse. But it still achieves 59% precision and 71%

recall in the worst case (case M-Sector of medical dataset). And the

number of iterations is always small (less than 10) in all cases.

6. Conclusion

Outlier detection is an important, but tricky problem, since the

intention of outlier definition often depends on the user and/or the

dataset. We propose to solve this problem by bringing the user in

the loop, and allowing him or her to give us some examples that he

or she considers as outliers. Experiments on both real and synthetic

data demonstrate that the method can succesfully incorporate these



Table 2 Interesting Outliers and the Discriminants.

Cases
Dataset

Label Discription Condition # of Interesting Outliers

U-Fringe Fringe (0.3, 0.6, �, 0.4) 330
Uniform Dataset

U-Corner Corner (1, 2, �, 0.5) 274

E-Fringe Fringe (5, 30, �, 0.85) 214

(15, 25, �, 0.8)

Ellipse Dataset
E-Long Long Ends

(30, 40, �, 0.6)
137

(5, 15, �, 0.8)
E-Short Short Ends

(35, 40, 
, 0.6)
157

M-All All (1, 40, �, 0.9) 162

Mixture Dataset M-Large Large Cluster (15, 40, �, 0.9) 114

M-Small Small Cluster (1, 10, �, 0.9) 49

M-Sector Sector Part (100, 600, �, 0.97) 163

Medical Dataset (0, 40, �, 0.84)
M-Origin Origin Part

(140, 200, 
, 0.2)
75

10

10.5

11

11.5

12

10 10.5 11 11.5 12

y

x

Interesting Outliers

10

10.5

11

11.5

12

10 10.5 11 11.5 12

y

x

User-provided Examples

10

10.5

11

11.5

12

10 10.5 11 11.5 12

y

x

Detection Results

10

10.5

11

11.5

12

10 10.5 11 11.5 12

y

x

Interesting Outliers

10

10.5

11

11.5

12

10 10.5 11 11.5 12

y

x

User-provided Examples

10

10.5

11

11.5

12

10 10.5 11 11.5 12

y

x

Detection Results

Figure 4 Detection Results on the Uniform Dataset. Top row: case U-Fringe, bottom row: case U-

Corner—see Table 2 for description of each case.
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Figure 5 Detection Results on the Ellipse dataset. From top to bottom, in turn: case E-Fringe, case

E-Long, case E-Short—see Table 2 for description of each case.
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Figure 6 Detection results on the Mixture dataset. From top to bottom, in turn: case M-All, case

M-Large, Case M-Small—see Table 2 for description of each case.
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Figure 7 Detection Results on the Medical Dataset. From top to bottom in turn: Case M-Sector, Case

M-Origin, A Zoom-In Version of Case M-Origin—see Table 2 for description of each case.



Table 3 Precision, recall showing performance of the proposed method.

The number of iterations for convergence in the classification step

is also shown.

Test Data Precision Recall Iterations

U-Fringe 82.76 88.18 8.1
Uniform Dataset

U-Corner 91.90 97.92 4.1

E-Fringe 84.02 89.77 4.6

Ellipse Dataset E-Long 95.97 97.30 5.7

E-Short 83.26 89.94 6.7

M-All 86.81 93.09 4.1

Mixture Dataset M-Large 89.13 93.60 4

M-Small 79.43 90.82 5.1

M-Sector 59.02 71.72 7.5
Medical Dataset

M-Origin 62.70 77.33 5

examples in the discovery process and detect outliers with “outlier-

ness” characteristics very similar to the given examples.
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