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Abstract Incomplete information is a kind of information including uncertain statements. Data models which
can represent incomplete information are known to be useful for reusing materialized views to evaluate queries
and for access control guaranteeing no secret information disclosed. We have proposed a bag-based data model
(called EC-tables) which can represent incomplete information. In this paper, EC-tables are reviewed first. Then, a
submodel of EC-tables, called restricted EC-tables, is introduced. Next, under two semantics called Closed World
Assumption (CWA) and Open World Assumption (OWA) for these data models, the closure properties of algebraic
operations and their inverses on each model are shown.
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. tion. Moreover, in some of the recent works on answering
1. Introduction ) i o ) )
queries using materialized views, data models for incomplete

Incomplete information is partial and ambiguous informa-  information are demonstrated to be useful [1], [4]. Such data

tion such as “We know that the course Databases is given models are also useful for access control guaranteeing no se-

at room A01, but we do not know who teaches it” and “The
room of the course Programming given by Ishihara is B02
or C03.” Information which we obtain in the real world is
often incomplete. To handle the incompleteness strictly, we

need data models which can represent incomplete informa-

cret information disclosed, as shown in the example below.
0O Example 10 Consider the idea of Disclosure Monitor pro-
posed in [3]. When a database user issues a query , Disclosure
Monitor maintains (a) the knowledge that the user has ob-

tained from the database so far and (b) the knowledge that



the user will obtain from the answer of the query. If some se-
cret information can be derived from the knowledge (a) and
(b), then Disclosure Monitor refuses to answer the query.

Data models for incomplete information are useful for
representing the user’s knowledge because a query and its
answer can be regarded as incomplete information on the
database. Therefore, if such incomplete information can be
naturally treated, the idea of Disclosure Monitor will have
more impact. O

Ordinary relational databases cannot represent incomplete
information naturally. Therefore, some modifications of re-
lational databases have been proposed. For example, in a
Codd table, unknown values are represented by one special
symbol, say null. In a V-table, unknown values are repre-
sented by variables. A C-table [5] is an extended V-table so
that each tuple has a condition for the tuple to exist. More-
over, in [5], the complexity of operations on those models is
investigated.

O Example 20 Tables 1 and 2 are examples of a V-table
and a C-table, respectively. Table 1 shows that the course
Databases is given at room A0Q1, but the teacher is unknown.
Table 2 contains a new attribute con representing the condi-
tion for the associated tuple to exist. For example, the tuple
(Programming, Ishihara, y) exists if y is B02 or C03. O

The underlying data model of Codd tables, V-tables and
C-tables is relational. However, most of the practical query
languages are based on bags, i.e., the answer of a query may
contain duplicate tuples. Therefore, in the situation of Ex-
ample 1, relation-based data models for incomplete informa-
tion cannot represent the user’s knowledge precisely. Thus,
a bag-based data model for representing incomplete informa-
tion is desirable.

In[9], we have proposed a bag-based data model called
EC-tables. EC-tables are an extension of C-tables and its
underlying data model is based on bags.

O Example 30 Table 3 is an example of an EC-table. In this
table, the number of tuples is given at the right of —. The
first tuple says that some teacher x gives z courses at room
AO01. The second tuple says that the room where Ishihara
gives two courses is B02 or C03. O

In this paper, we introduce a submodel of EC-tables in
which no variables can be used for indicating the number of
tuples. Hereafter the submodel is referred to as restricted
EC-tables. We also provide two semantics of these models.
One is called Closed World Assumption (CWA), which means
that “invisible tuples do not exist.”
CWA, Table 3 says that any teacher other than Ishihara uses

For example, under

only room AQ01l. The other semantics is called Open World
Assumption (OWA), which means that “the existence of in-
visible tuples is open.” For example, under OWA, Table 3

Table 1 V-table
Course Teacher Room
Databases x A01
Programming Ishihara Y
Network Ishihara Y
Table 2 C-table
Course Teacher Room con
Databases T A01 true
Programming Ishihara y (y = B02) Vv (y = C03)
Network Ishihara y (y = B02) Vv (y = C03)
Table 3 EC-table
Teacher Room con
x A01 true —
Ishihara y (y=B02) Vv (y =C03) | —

does not say anything about the possibility that a teacher
other than Ishihara uses a room other than A0l. Then, in
this paper, the closure properties of algebraic operations and
their inverses on each model under these semantics are in-
vestigated. The closure properties of forward operations are
important since the answer of a query to incomplete informa-
tion should be represented under the same data model. The
closure properties of inverse operations are also important
when the incomplete information on a database is derived
from a query to the database and its answer. For example,
consider the situation in Example 1. Suppose that the user
has issued a query ¢ to the database D and obtained the
answer A. Then, Disclosure Monitor computes the user’s
knowledge (a), i.e., the incomplete information on D deter-
mined by ¢ and A. Roughly speaking, this computation is
accomplished by applying the inverse of ¢ to A. Therefore, in
order for the incomplete information on D to be represented
under a data model, the inverse of every operation in ¢ is
desirable to be closed on the same data model.

Table 4 shows our results. Y means that the operation is
closed, while N means that the operation is not closed. “?”
means that the closure property of the operation is unknown,
although we conjecture that this is closed. From the table,
the inverse of projection is not closed on EC-tables under
either CWA or OWA. However, on restricted EC-tables, the
inverse of projection is closed under both CWA and OWA.

There are some related works on bag-based data model for
incomplete information. In [7], a partial order representing a
degree of incompleteness between bags is introduced. Then,
it is shown that the order is not expressible in a standard
bag language called BQL [8]. In the model of [7], partial in-
formation such as “A’s value is unknown” can be captured,
but ambiguous information such as “A’s value is B or C”
cannot be represented naturally. On the other hand, in our

model, ambiguous information can be naturally represented.



Table 4 Closure properties
(a) EC-tables, CWA

Selection Projection Union Product Difference
Forward Y* Y* Y* Y* Y
Inverse N N Y N N
(b) EC-tables, OWA
Selection Projection Union Product Difference
Forward N Y* Y* Y* Y*
Inverse Y* N Y ? N
(c) Restricted EC-tables, CWA
Selection Projection Union Product Difference
Forward Y Y Y Y Y
Inverse N Y Y N N
(d) Restricted EC-tables, OWA
Selection Projection Union Product Difference
Forward N Y Y Y Y
Inverse Y Y Y ? N

* means that it is a known result in [9].

In [6], aggregate queries on C-tables are defined. Then, it is
shown that the aggregate queries on C-tables are closed. In
that model, aggregate values are represented by the values of
a special attribute. On the other hand, our model is purely
a bag-based model.

The rest of this paper is organized as follows. Section 2
provides the definitions of bag-based databases and EC-
tables. In Section 3 we prove the closure properties on EC-
tables under both CWA and OWA. In Section 4 we prove the
closure properties on restricted EC-tables under both CWA
and OWA. Some of the proofs are omitted because of the
space limitation. Lastly, in Section 5, we provide the sum-

mery and future work.

2. Definitions

2.1 Bag-based databases

In this section, we extend the definition of ordinary re-
lational databases in[2] to bag-based databases. Although
bag-based databases are not relational, we borrow the termi-
nology of relational databases.

O Definition 10 A relational schema R is a set of attributes.
For simplicity, we assume that the domain of every attribute
in R is the set N of non-negative integers. A tuple t over R is
a function from R to N. Let t(A) denote the value of A € R
in t. A relational instance D over R is a function from the
set of tuples over R to N such that {t | D(t) & 0} is a finite
set. A database schema R is a finite sequence (R1,---, R,)
of relational schemas. A database instance over a database
schema R = (R, - - , D), where

each D; is a relational instance of R;. O

-, Ry) is a sequence (D1, - - -

We define some notations. For a tuple ¢t over R and

Table 5 A relational instance D in Example 4
Birthday Name
June 10 Sato

May 5

— 3

Tanaka | — 2

XCR, let t[X] denote the function obtained by restricting
the domain of ¢ to X. Let dom(D) = {t | D(t) + 0}. If
D1 (t) £ Do(t) for an arbitrary tuple ¢, then we write D.CD:s.
0 Example 40 Suppose that there are three people whose
surnames and the dates of the birth are the same. The sur-
name is Sato and the date is June 10. Moreover, assume that
there are two other people whose surnames and the dates of
the birth are the same. The surname is Tanaka and the date
is May 5. Then, the relational instance D representing these

facts is as follows (see Table 5):

3 if t = (June 10, Sato),
D(t)=4¢ 2 ift=(May 5, Tanaka),

0 otherwise.

In Table 5, the numbers of tuples are shown to the right of .

By definition, dom(D) = {(June 10, Sato), (May 5, Tanaka)}.
]

0 Definition 20 We define selection, projection, union, prod-

uct and difference as follows.

Selection o¢(D): Let D be a relational instance over a re-

lational schema R and C be a condition. For every tuple ¢

over R, we define o¢(D)(t) as follows:

D(t)

0 otherwise.

if ¢ satisfies C,
oc(D)(t) =

Projection wx (D): Let D be a relational instance over a re-
lational schema R and let XCR. For every tuple ¢ over X,
we define wx (D)(t) as follows:

Z D(t).

t/ it =t[X]

Union D1 U Dsy:
a relational schema R. For every tuple ¢t over R, we define
(D1 U D2)(t) as follows:

Let D7 and D> be relational instances over

(D1 U D2)(t) = D1(t) + D2(t).

Product Dy x Da: Let Di and D2 be relational instances
over relational schemas R; and R», respectively, such that
R1 N Ry = (). For every t; over R and every t2 over Rz, we

define (D1 x D2)(t1t2) as follows:
(D1 X Dz)(tltg) = Dl(tl) X Dg(tz),

where ¢1t2 denotes the tuple over RiURs such that t1¢2[R1] =
t1 and t1t2[R2] = t2, and X in the right-hand side denotes

the arithmetic multiplication.



Difference D1 — Ds:
over a relational schema R. For every tuple ¢, we define
(D1 — D2)(t) as follows:

Let D7 and Ds be relational instances

(Dl — DQ)(t) = max(Dl (t) — Dz(t), 0),

where — in the right-hand side denotes the arithmetic sub-
traction. O
2.2 EC-tables
2.2.1 Syntax
Let V' be a set of variables. Let -~ denote the difference

operation on non-negative integers, i.e.,

. a—>b
a-b=
{0

A non-negative integer expression is an expression consisting

ifa=b,

otherwise.

of non-negative integers, variables, and operators +, x and
~. An atomic conditional expression is an expression in the
form of p = g, where p and ¢ are non-negative integer expres-
sions. A conditional expression is an expression consisting of
atomic conditional expressions and Boolean connectives —,
A and V. A C-tuple u over R is a function defined over
RU{con} such that u[R] is a total function from R to NUV
and u(con) is a conditional expression. An EC-table E over
R is a total function from the set of C-tuples over R to the set
of non-negative integer expressions such that {u | E(u) % 0}
is finite. Let dom(E) = {u | E(u) % 0}. If the range of an
EC-table E is N, then FE is called a restricted EC-table.
2.2.2 Semantics
A wvaluation is a function from V' to N. The domain of a

valuation v is extended as follows:

e For each constant a € N, let v(a) = a.

e For non-negative integer expressions = + y, X y and
x -~y let v(z+y) =v(z)+rv(y), vizxy) =rv(x) xv(y) and
V(@ = y) = vl(@) = v(y).

e For an atomic conditional expression | = m, let v(l =
m) = (w(l) = v(m)).

e For conditional expressions —¢, ¢ A d and c V d, let
v(—c) = —w(c), v(eAd) = v(c)Av(d) and v(cVd) = v(c)Vr(d).

e For a C-tuple u over X, let v(u) be a tuple over X
satisfying that for each A € X, (v(u))(A) = v(u(A)).

e For an EC-table E and a tuple ¢,

>

w:v(u)=t,v(u(con))=true

v(E)(t) = v(E(u)).

We provide two semantics of EC-tables. The first seman-
tics is Closed World Assumption (CWA), which means that
The other is Open World

Assumption (OWA), which means that “the existence of in-

“invisible tuples do not exist.”

visible tuples is unknown.”
O Definition 30 The set repc((E1, -, En)) of database in-
stances represented by (En,---, E,) under CWA is defined

as follows:
T@pc((El,"',En>)
= {<D177Dn> | D, :V(E1)7'”7D’Vl :V(En)

for some valuation v}.

The set repo({E1,---,E,)) of database instances repre-
sented by (E1,- -, E,) under OWA is defined as follows:

,En>)
» D) | D12v(Er), -+, Du2v(En)

repo({Ex, -
= {(Dy,-

for some valuation v}.

If n = 1, then we write repc(F1) and repo(E1) instead of
repc((E1)) and repo({E1)), respectively. O

O Definition 40 Let ¢ be an operation on bag-based
databases with n inputs and m outputs. The operation

q is closed on EC-tables under CWA if for any sequence

(E1,- -, E,) of EC-tables, there is a sequence (E1,---, E,)
such that
repc((Ev, -+, En)) = {g((D1,- -, Dn)) |

(D1,-++,Dyn) € repc({E1,- -+, En))}.

The inverse of operation q is closed on EC-tables under CWA

if for any (E1,---, E,,), there is (E1, - -+, E,) such that

s En)) ={(D1,---
q(<D17' ) 7Dn>) S repc(<Ei7 e

repc((E1, - - »Dn) |

v En)}-

O
Closure properties on EC-tables under OWA and on re-
stricted EC-tables under CWA and OWA are defined in the

Same way.
3. Closure properties on EC-tables

3.1 Under CWA

In this section, we show that the inverse of projection is
not closed (Theorem 1). Then, we show that both the inverse
of union and difference are closed (Theorems 2 and 3).

0 Theorem 10 The inverse of projection is not closed on EC-

tables under CWA.
Proof : We assume that the inverse of projection is closed on
EC-tables under CWA | and derive a contradiction. Consider
an EC-table E' (Table 6 (a)) over a relational schema {A}
with dom(E") = {u}, u(con) = true and u(A4) = E'(u) = =,
where x is a variable. From the assumption that the inverse
of projection is closed, there is an EC-table E over relational
schema {A, B} such that

repc(E) = {D | 7a(D) € repc(E")}.

Let m be the number of tuples in dom(FE), and let [ be an

integer such that [ > m. Consider an instance D shown in



Table 6 E’, D and w4 (D) in Theorem 1

(a) E/ (b) D
A con A B
l 1 — 1
T true | — x
l 2 — 1
(c) ma(D)
A
! —1 l l — 1

Table 6 (b). Since w4 (D) is an instance shown in Table 6 (c),
we have ma(D) € repc(E’). Hence, we have D € repc(E).
By the definition of CWA,

repc(E) = {D | D = v(FE) for some valuation v}.

Hence, there must be a valuation v such that D = v(E).

Since m is the number of tuples in dom(E), the number of

tuples in dom(D) is at most m. However, from Table 6 (b),

the number of tuples in dom(D) is [ (> m). This is a con-

tradiction. m|
Now, we prove that the inverse of union is closed.

O Definition 50 Let E be an EC-table over a relational
schema R. We define UT'(E) as a pair (E1, Ea) satisfy-
ing the following conditions, where F1 and E» are EC-tables
over R. For every u in dom(E), introduce new variables x,
and y,, not appearing in dom(FE). Let ® denote the following

conditional expression:

o= N\ (@uty.=EB@).

uwedom(E)
For each u in dom(E), let & and @ be C-tuples over R such
that
o 4[R] = u[R], @(con) = u(con) A P,
e U[R] = u[R], @(con) = u(con) A (—P).

Now, F1 and FE- are defined as follows:

Ei(v) = { g“

if u'=d for some u € dom(E),

otherwise,
Yu if u'=4 for some u € dom(E),
Ex(u') = { E(u) if u'=a for some u € dom(E),

0 otherwise.

[m]
Hereafter, we prove that D1 U D2 € repc(F) if and only if

(D1, D2) € repc(UTH(E)).
0 Lemma 10 Dy U Ds S

repc (U™ (E))O
Proof : Let E be an EC-table over a relational schema R.
Let (E1, E2) be UTY(E). Consider instances Dy and Ds such
that (D1, D2) € repc({E1, E2)). There must be a valuation
v’ such that v/(E1) = Dy and v/ (E2) = D2. Let u € dom(E).
If /(®) is true, then

repc(E) if (D1,D2) €

V(B (@) + V' (B2(2) + v/ (E2(1))

Otherwise,

V(B (@) + v (B2(@) + v (B (1))
= 0+ 0+ V' (B(w) = v/ (E(u)).

Hence, we have D1 U Dy = V/'(E) € repc(E). O
OLemma 20 Dy U Dy € repc(E) only if (Dq,D2) €
repc(U™H(E))0

Proof : Let E be an EC-table over a relational schema R,
and D; and D2 be arbitrary instances such that D; U
Dy € repc(E).
v(E) = D1 U Ds. Let (E1,Es) be UT'(E).
lows, we construct a valuation v’ such that Dy = v/(FE1) and
Dy = V' (E?).

Then, there is a valuation v such that

In what fol-

V' is defined on the variables appearing in dom(FE1) or

dom(E>) and the new variables z, and y,. For each vari-
able z appearing in dom(E1) or dom(E>), let v'(2) = v(z).
For the new variables x,, and y., v’ satisfies the following
equations:

0 10 For each tuple t € dom(D1),

> V(zw) = Di(t).

u:(ue€dom(E))A(v(u)=t)A(v(u(con))=true))

0 20 For each tuple t € dom(D3),

V'(yu) = Da(t).

u:(uedom(E))A(v(u)=t)A(v(u(con))=true))

0O 30 For each C-tuple u € dom(FE),
V(zu) + V' (yu) = v(B(w).

Before proving the existence of such v/, we show that such
V' also satisfies D1 = v/(E1) and D2 = V/(E2). If /' sat-
isfies the equations of type (3), then v'(®) = true. There-
fore, v/ (@(con)) = v(u(con)) and V' (@(con)) = false for each

u € dom(E). Thus, the equation of type (1) becomes

Di(t) = V' (E1(w),
a:(a€dom(B1)) AW (@) =t)A(v ((con))=true)
and therefore, D1 = V'(El). Similarly, we have Doy = v/ (E3).
Now we show the existence of v/. First, consider a C-
tuple u € dom(FE) such that the equation of type (1) involv-
ing x, is v/ (zy) = Di(t) (i.e., the equation contains only
one variable z,). Then, the equation of type (2) involv-
Hence, v/ (x) + V' (yu) =
Dy (t) + D2(t) = (D1 U D2)(t) = v(E(u)). Next, consider C-

tuples ui,- -

ing y, must be v/(y,) = Da(t).

,un € dom(F) such that the equation of type
(1) involving @y, is v'(Tu,) + -+ + v/ (2w, ) = D1(t). Then,
the equation of type (2) involving y., must be v/(yu,) +
V) = Da(t). Also, v(B(u)) + -+ v(Bun)) =



(D1 U Ds)(t) since D1 U Dy = v(E).
value of V'(xu.) (1 £4i<n)sothat 0 < v'(zy,) £ v(E(w))
and ) . V' (xy;) = Di(t). Let v'(yu,) = v(E(u:))
These v'(zy;)’s and v'(yu,)’s satisfy all the equations. O

We can choose the
- V’(:Eui,)'

From Lemmas 1 and 2, we obtain the following theorem.

O Theorem 20 The inverse of union is closed on EC-tables
under CWA. m|

Next, we prove that the difference is closed.

O Definition 60 Let E; and E» be EC-tables over a relational
schema R. For each pair of Flgdom(El) and Fggdom(Ez),
let S and T' be dom(E1)Udom(E>2) and F1 U F», respectively,
and ur, r, be a C-tuple satisfying the following conditions:

e up p,[R] = u[R)] for some u € Fy U Fy;
e up r,(con) is the conjunction of the following condi-

tional expressions:

/\u1 er, W1 (con),

/\uger uz(con),

- N\ N\ wrnr(4) = (4)),
uw' €T AER
- /\ \/ —(ur, r, (A —UI(A))'

uw'e€S—T AER

Now, for each C-tuple u over R, (E1 — E2)(u) is defined as

follows:
(Er — E2)(u)

Zu1€F1 Fi(ui) - Zuzer F(uz)
if u =wup, p, for some F1gdom(E1)

and FoCdom(Ez),

0 otherwise.
O
Hereafter, we prove repc(E1 — E2) = {D1— D2 | (D1, D2) €
repo((Eh, E2))}.
O Lemma 30 repc(Er — E2)2{D1 — D2 | (Di,D2) €

repo((E1, E2))}.
Proof : Let Ey and E> be EC-tables over a relational schema
R. Consider an arbitrary pair (D1, D2) € repc((E1, E2)).
Then, there must be v such that v(E1) = D1,v(FE2) = Da.
Hereafter, we prove v(E1 — E3) = D1 — Da.
e v(Ei—E3)2Di — D,

Consider an arbitrary tuple t such that ¢ € D; — Da.
Let Fy and F> be {u1 | w1 € dom(E1),v(ui(con)) =
true,v(ui[R]) = t[R]} and {us | uz € dom(Es2), v(uz(con)) =
true,v(uz[R]) = t[R]},

v(up, r,(con)) is true.

respectively. We prove that
v(ur, r, (con)) is equal to the con-

junction of the following four expressions:

010 Ay, ep, ¥(ui(con)),
020 /\u - (uQ(con))
030 /\ /\ v(up ry(A)) = y(u'(A))),
uw' €T AER
040 /\ \/ (v(ur r, (A) = v(d'(A))),

uw'e€S—T AER

(1) is true because v(ui(con)) is true in Fy. (2) is also true
by the same reason. By the definition of F; and F, for each
C-tuple v’ € T, we have v(u'[R]) = ¢[R]. From Definition
6, since up, m, [R] is equal to some C-tuple in T, for each C-
'[R]) = v(ur, m,[R]). Hence, (3)
By the definition of F} and F», for each C-tuple
w € 8 —T, we have v(up, 1, [R]) + v(u'[R]). Hence, (4) is
true. Therefore, v(up, r,(con)) is true. The number of tu-
v(E1(u1)) in

tuple u’ € T we have v(u

is true.

ples which are equal to v(ur, m[R]) is Y,

Dy, andis ) . v(E2(uz)) in Ds. Since
v((Er — Ea2)(urp, k)
= Y wEw) = Y v(Fa(us))
u1€F; uz€Fy
= (Dl - DQ)(t)a

we obtain v(Eq — Eg)ng — Ds.

e v(E\— E)CDy — Ds
Consider an arbitrary C-tuple up,r, € dom(E1 — Es)
Then, by the defini-

each of the four expressions (1)—(4)

such that v(up m,(con)) is true.

tion of um r,(con),

above is true. From (1) and (3), if ux € Fi then
v(u1[R]) = v(umr[R]). From (4), if wy ¢ Fi then
v(ui[R]) £ v(up m|R]). Therefore, we have Fi = {u |

u1 € dom(E1),ui(con) = true,v(ui[R]) = v(ur r[R])}-
In the same way, Fo = {uz | uz € dom(E2),uz(con) =

true,v(uz[R]) = v(ur, 7, [R])} is derived. Hence, the number

of tuples which are equal to v(ur, r, [R]) is ZuleFl v(E1(u1))
in D1, and is Eugng v(F2(u2)) in Ds. Since
v((Er — E2)(ur )
= > u(Bi(w)) = Y v(Ba(u2),
uy €Fp ug€Fy
we have I/(El — Eg)ng — DQ. O
OLemma 40 repc(E1 — E2)CS{D:1 — D2 | (Di1,Dq2) €

repc((E1, E2))}0
Proof : Let E1 and E»> be EC-tables over a relational schema
R. Consider an arbitrary instance D’ such that D’ €
repc(E1 — E»). Then, there must be v/ such that D' =
V' (E1 — E»). Hereafter, we prove D' = v/ (E1) — vV'(E2).
o D'DV(E1) -V (E2)

Consider an arbitrary tuple ¢t such that ¢ € dom(v
V' (E2)). Let F1 and F» be {u1 | u1 € dom(En), v’ (us
true, v’ (ui[R]) = t|R]} and {us | u2 € dom(E>),
true,v’'(u2[R]) = tR]},

V' (up, F,(con)) is true. v'(ur, r,(con)) is the conjunction of

"(Er) —
(con)) =
V' (uz2(con)) =
respectively. We prove

the following four expressions:

010 Ay, cp, ¥ (wi(con)),
020 /\u erV V' (u2(con)),
030 /\ /\ (ur 7, (A)) = V' (W' (A))),

uw €T AER



040 AV o0/ (wnr(4) =/ ((4).

uw'€S—T AER
(1), (2), (3) and (4) are true in the same way as Lemma 3.
Hence, v/ (ur, r, (con)) is true. The number of tuples which
wer, V' (Bi(u1)) in V'(E1),
and is ) . V'(E2(u2)) in v/(E2). Since

are equal to v/ (ur, m[R]) is Y.

V' ((Er — E2)(ur )

= Z V(B (u1)) = Z V' (E2(uz))

uy €F uz Eug

= (V'(B) =V (B2))(t),

we obtain v/ (Ey — Ez) = D' DV (Ey) — v/ (E2)0
o D'CV/(E1)— V' (Es)

Consider an arbitrary C-tuple ur, g, such that v’ (ur, r,(con))
is true and up p, € dom(E1 — E3). Then, by the definition
of up, r,(con), each of the four expressions (1)—(4) above
is true. We have Fi = {u1 | w1 € dom(E1),ui(con) =
true,v’(u1[R]) = V' (up R R])} and Fo = {us | u2 €
dom(Es),uz(con) = true,v’'(uz2[R]) = v'(ur rp[R])} in the
same way as Lemma 3. The number of tuples which are
equal to V' (up, r, [R]) is ZuleFl V' (E1(u1)) in v/ (E1), and is
Zuzer V' (E2(uz2)) in v'(E2). Since

l//((El - EQ)(UFle)))

= Z IJI(El(Ul)); Z V/(E2(U2))7

uy €Fy ug€Fy

we obtain ' (Ey — Ep) = D'Cv/'(Ey) — V' (E2). O
By Lemmas 3 and 4, we obtain the following theorem.
O Theorem 30
CWA. O
3.2 Under OWA

In this section, we show that selection and inverse of pro-

The difference is closed on EC-tables under

jection are not closed (Theorems 4 and 5). Then, we show
that the inverse of union is closed (Theorem 6).

O Theorem 40 Selection is not closed on EC-tables under
OWA.

Proof : We assume that selection is closed on EC-tables un-
der OWA. Then, for each EC-table E, there is an EC-table
E’ such that

repo(E’) = {oc(D) | D € repo(E)}. (1)
On the other hand, by the definition of OWA, we have
repo(E") = {D" | D'2v(E") for some valuation v}.

Hence, for an arbitrary instance D € repo(F) and tuple ¢
not satisfying the condition C, (DU{t}) must be in repo (E’).
This contradicts equation (1). O

O Theorem 50 The inverse of projection is not closed on EC-
tables under OWA.

Table 7 E’, D, ma(D) and wa(v(E)) in Theorem 5

(a) B
A | con (b) D
T true | — x A B
(c) 7a(D) ! 1 |-t
A l 2 — 1
l — 1 :
(d) ma(v(E)) ! ! =1
A
l — m’

Proof : We assume that the inverse of projection is closed on
EC-tables under OWA, and derive a contradiction. Consider
an EC-table E' (Table 7 (a)) over a relational schema {A}
with dom(E") = {u}, u(con) = true and u(A) = E'(u) = =,
where x is a variable. From the assumption that the inverse
of projection is closed, there is an EC-table E over relational
schema {A, B} such that

repo(E) = {D | ma(D) € repo(E')}.

Let m be the number of tuples in dom(FE), and let [ be an
integer such that [ > m. Consider an instance D shown in
Table 7 (b). Since w4 (D) is an instance shown in Table 7 (c),
we have ma (D) € repo(E"). Hence, we have D € repo(FE).
By the definition of OWA,

repo(E) = {D | D2v(E) for some valuation v}.

Hence, there must be a valuation v such that D2v(E). There
are two cases:

0 10 Suppose that D = v(E).
of tuples in dom(E), the number of tuples in dom(D) is at

Since m is the number

most m. However, from Table 7 (b), the number of tuples in
dom(D) is I (> m). This is a contradiction.

0 20 Suppose that D D v(E). Let m’ be the number of
tuples in dom(v(E)). Note that m’ < I and that wa(v(E))
must be the instance shown in Table 7 (d). Since v(E) is also
in repo(E), ma(v(E)) must be in repo(E’). However, there
is no valuation v’ such that wa(v(E))2v'(E") since m’ < L.
That is, 7 (v(E)) € repo(E’). This is a contradiction. O

Now, we prove the inverse of union is closed.

O Theorem 60
under OWA.
Proof : We have already proved that

The inverse of union is closed on EC-tables

D1 U Dy = v(E) if and only if D1 = v'(E1), D2 = V' (E2)
in Theorem 2. Therefore, we conclude that
D1 U Dy 2v(E) if and only if D12V (E1), D22V (Ez).

This implies that the theorem holds. O



4. Closure properties on restricted EC-
tables

In this section, we prove the inverse of projection is closed
on restricted EC-tables under CWA. Proofs under OWA are
omitted because of the space limitation.

O Definition 70 Let X and Y be relational schemas such that
X NY = 0. For each pair of u € dom(E) and A € Y, intro-
duce new variables 7, - Let 4; (1 £i < E(u))
denote the tuple such that

ilX] =u,

i(A )—m,“ for each A € Y, and
i(con) =

)

Txoy (E)(u') is a restricted EC-table over X UY such that

A
’ xu,E(u)'

<3

§>

u(con).

§>

1 if v’ = 4, for some u € dom(E)
and i (1 <4 < E(u)),

0 otherwise. O

Txuy (B)(u) =

Hereafter, we prove mwx(D) € repc(F) if and only if
D € repc(rxly (E)).

0 Lemma 50 7x (D) € repc(E) only if D € repc(myly (E))O
Proof: Let E be a restricted EC-table over a relational
schema X. Consider an arbitrary instance D over relational
schema X UY satisfying nx (D) € repc(E). Then, there
must be v such that v(E) = 7x(D). Let E' be mxly (E).
We can construct a valuation v/ satisfying the following con-
ditions:

0 10 The domain of v/ is the set of variables in dom(FE’).
0 20 For each variable  in the domain of v, v/ (x) = v(z).
030 #y(V(E")) =my (D).
The last condition holds because an arbitrary C-tuple u’ in
dom(E'") satisfies E'(v') = 1 and each new variable in ¢'(Y)
appears only once. Thus, we obtain v/(E’) = D. Hence,
D € repc(mxly (E)) is derived.

0 Lemma 60 7x (D) € repc(E) if D € repc(myl,y (E))D
Proof: Let E be a restricted EC-table over a relational
schema X. Let E' be my.y (E). Consider an arbitrary in-
stance D such that D € repc(E').
ation v'(E') =

There must be a valu-
D. Then, let v be a valuation obtained by
restricting the domain of v/ to the set of variables appear-
ing as attribute-values of A € X. Hereafter, we prove that
rx (V' (E") = v(E).

o mx(V/(E)CH(E)
For each C-tuple & € dom(E'), if v'(i(con)) is true then
v(u(con)) is also true. For each attribute A € X, we have
v (@(A)) = v(u(A)).
C-tuples 4 we obtain mx (v'(E"))Cv(E).

o mx(/(E)2v(E)
For each C-tuple u € dom(FE), consider C-tuples 4; (1 <4 <
E(u)) over X UY. If v(u(con)) is true then v/'(ii(con)) is

Since E(u) is equal to the number of

also true. For each attribute A € X, we have v/'(i(A)) =
v(u(A)). Hence, since just E(u) C-tuples u exists in
dom(E'"), we obtain 7x (v'(E"))2v(E).

Hence, v(E) = wx (D) € repc(E). O

From Lemmas 5 and 6, we obtain the following theorem.
0 Theorem 70 The inverse of projection is closed on re-
stricted EC-tables under CWA. i

5. Conclusion and future work

In this paper, we have proved the closure properties on
EC-tables under both CWA and OWA. Next, we have pro-
posed the submodel of EC-tables, and proved the closure
properties on the model under both CWA and OWA.

As a future work, we will prove the cases where the clo-
sure properties are open, although we conjecture that they
are closed. Then, we will evaluate the computational com-
plexity of the operations and the sizes of EC-table after op-
erations. Also, we will define aggregate queries to EC-tables

and restricted EC-tables.
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