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不完全情報を表現可能なbag-basedデータモデルの閉包性
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あらまし 不完全情報とは, 一部が曖昧であったり未確定であるような情報のことである. 実体化ビューを問い合わせ

の評価に再利用する場合や，秘密情報が漏洩しないことを保証したアクセス制御を行う場合に, 不完全情報を自然に

表現できるデータモデルが有用であることが知られている. 筆者らは, 不完全情報を表現可能な, 多重集合 (bag)に基

づいたデータモデル (EC-tableと呼ぶ)を提案している. 本稿では, まず EC-tableについて述べ, その部分モデルを導

入する. そして, これらのデータモデルに対して, 二つの意味定義 (OWA, CWA)を与え，それぞれのもとでの代数演

算とその逆演算の閉包性を示す.
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Abstract Incomplete information is a kind of information including uncertain statements. Data models which

can represent incomplete information are known to be useful for reusing materialized views to evaluate queries

and for access control guaranteeing no secret information disclosed. We have proposed a bag-based data model

(called EC-tables) which can represent incomplete information. In this paper, EC-tables are reviewed first. Then, a

submodel of EC-tables, called restricted EC-tables, is introduced. Next, under two semantics called Closed World

Assumption (CWA) and Open World Assumption (OWA) for these data models, the closure properties of algebraic

operations and their inverses on each model are shown.
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1. Introduction

Incomplete information is partial and ambiguous informa-

tion such as “We know that the course Databases is given

at room A01, but we do not know who teaches it” and “The

room of the course Programming given by Ishihara is B02

or C03.” Information which we obtain in the real world is

often incomplete. To handle the incompleteness strictly, we

need data models which can represent incomplete informa-

tion. Moreover, in some of the recent works on answering

queries using materialized views, data models for incomplete

information are demonstrated to be useful [1], [4]. Such data

models are also useful for access control guaranteeing no se-

cret information disclosed, as shown in the example below.

［Example 1］ Consider the idea of Disclosure Monitor pro-

posed in [3]. When a database user issues a query , Disclosure

Monitor maintains (a) the knowledge that the user has ob-

tained from the database so far and (b) the knowledge that



the user will obtain from the answer of the query. If some se-

cret information can be derived from the knowledge (a) and

(b), then Disclosure Monitor refuses to answer the query.

Data models for incomplete information are useful for

representing the user’s knowledge because a query and its

answer can be regarded as incomplete information on the

database. Therefore, if such incomplete information can be

naturally treated, the idea of Disclosure Monitor will have

more impact. 2

Ordinary relational databases cannot represent incomplete

information naturally. Therefore, some modifications of re-

lational databases have been proposed. For example, in a

Codd table, unknown values are represented by one special

symbol, say null. In a V-table, unknown values are repre-

sented by variables. A C-table [5] is an extended V-table so

that each tuple has a condition for the tuple to exist. More-

over, in [5], the complexity of operations on those models is

investigated.

［Example 2］ Tables 1 and 2 are examples of a V-table

and a C-table, respectively. Table 1 shows that the course

Databases is given at room A01, but the teacher is unknown.

Table 2 contains a new attribute con representing the condi-

tion for the associated tuple to exist. For example, the tuple

(Programming, Ishihara, y) exists if y is B02 or C03. 2

The underlying data model of Codd tables, V-tables and

C-tables is relational. However, most of the practical query

languages are based on bags, i.e., the answer of a query may

contain duplicate tuples. Therefore, in the situation of Ex-

ample 1, relation-based data models for incomplete informa-

tion cannot represent the user’s knowledge precisely. Thus,

a bag-based data model for representing incomplete informa-

tion is desirable.

In [9], we have proposed a bag-based data model called

EC-tables. EC-tables are an extension of C-tables and its

underlying data model is based on bags.

［Example 3］ Table 3 is an example of an EC-table. In this

table, the number of tuples is given at the right of 7→. The

first tuple says that some teacher x gives z courses at room

A01. The second tuple says that the room where Ishihara

gives two courses is B02 or C03. 2

In this paper, we introduce a submodel of EC-tables in

which no variables can be used for indicating the number of

tuples. Hereafter the submodel is referred to as restricted

EC-tables. We also provide two semantics of these models.

One is called Closed World Assumption (CWA), which means

that “invisible tuples do not exist.” For example, under

CWA, Table 3 says that any teacher other than Ishihara uses

only room A01. The other semantics is called Open World

Assumption (OWA), which means that “the existence of in-

visible tuples is open.” For example, under OWA, Table 3

Table 1 V-table

Course Teacher Room

Databases x A01

Programming Ishihara y

Network Ishihara y

Table 2 C-table

Course Teacher Room con

Databases x A01 true

Programming Ishihara y (y = B02) ∨ (y = C03)

Network Ishihara y (y = B02) ∨ (y = C03)

Table 3 EC-table

Teacher Room con

x A01 true 7→ z

Ishihara y (y = B02) ∨ (y = C03) 7→ 2

does not say anything about the possibility that a teacher

other than Ishihara uses a room other than A01. Then, in

this paper, the closure properties of algebraic operations and

their inverses on each model under these semantics are in-

vestigated. The closure properties of forward operations are

important since the answer of a query to incomplete informa-

tion should be represented under the same data model. The

closure properties of inverse operations are also important

when the incomplete information on a database is derived

from a query to the database and its answer. For example,

consider the situation in Example 1. Suppose that the user

has issued a query q to the database D and obtained the

answer A. Then, Disclosure Monitor computes the user’s

knowledge (a), i.e., the incomplete information on D deter-

mined by q and A. Roughly speaking, this computation is

accomplished by applying the inverse of q to A. Therefore, in

order for the incomplete information on D to be represented

under a data model, the inverse of every operation in q is

desirable to be closed on the same data model.

Table 4 shows our results. Y means that the operation is

closed, while N means that the operation is not closed. “?”

means that the closure property of the operation is unknown,

although we conjecture that this is closed. From the table,

the inverse of projection is not closed on EC-tables under

either CWA or OWA. However, on restricted EC-tables, the

inverse of projection is closed under both CWA and OWA.

There are some related works on bag-based data model for

incomplete information. In [7], a partial order representing a

degree of incompleteness between bags is introduced. Then,

it is shown that the order is not expressible in a standard

bag language called BQL [8]. In the model of [7], partial in-

formation such as “A’s value is unknown” can be captured,

but ambiguous information such as “A’s value is B or C”

cannot be represented naturally. On the other hand, in our

model, ambiguous information can be naturally represented.



Table 4 Closure properties

(a) EC-tables, CWA

Selection Projection Union Product Difference

Forward Y∗ Y∗ Y∗ Y∗ Y

Inverse N N Y N N

(b) EC-tables, OWA

Selection Projection Union Product Difference

Forward N Y∗ Y∗ Y∗ Y∗

Inverse Y∗ N Y ? N

(c) Restricted EC-tables, CWA

Selection Projection Union Product Difference

Forward Y Y Y Y Y

Inverse N Y Y N N

(d) Restricted EC-tables, OWA

Selection Projection Union Product Difference

Forward N Y Y Y Y

Inverse Y Y Y ? N

∗ means that it is a known result in [9].

In [6], aggregate queries on C-tables are defined. Then, it is

shown that the aggregate queries on C-tables are closed. In

that model, aggregate values are represented by the values of

a special attribute. On the other hand, our model is purely

a bag-based model.

The rest of this paper is organized as follows. Section 2

provides the definitions of bag-based databases and EC-

tables. In Section 3 we prove the closure properties on EC-

tables under both CWA and OWA. In Section 4 we prove the

closure properties on restricted EC-tables under both CWA

and OWA. Some of the proofs are omitted because of the

space limitation. Lastly, in Section 5, we provide the sum-

mery and future work.

2. Definitions

2. 1 Bag-based databases

In this section, we extend the definition of ordinary re-

lational databases in [2] to bag-based databases. Although

bag-based databases are not relational, we borrow the termi-

nology of relational databases.

［Definition 1］ A relational schema R is a set of attributes.

For simplicity, we assume that the domain of every attribute

in R is the set N of non-negative integers. A tuple t over R is

a function from R to N . Let t(A) denote the value of A ∈ R

in t. A relational instance D over R is a function from the

set of tuples over R to N such that {t | D(t) |= 0} is a finite

set. A database schema R is a finite sequence 〈R1, · · · , Rn〉
of relational schemas. A database instance over a database

schema R = 〈R1, · · · , Rn〉 is a sequence 〈D1, · · · , Dn〉, where

each Di is a relational instance of Ri. 2

We define some notations. For a tuple t over R and

Table 5 A relational instance D in Example 4

Birthday Name

June 10 Sato 7→ 3

May 5 Tanaka 7→ 2

X⊂=R, let t[X] denote the function obtained by restricting

the domain of t to X. Let dom(D) = {t | D(t) |= 0}. If

D1(t) <= D2(t) for an arbitrary tuple t, then we write D1⊂=D2.

［Example 4］ Suppose that there are three people whose

surnames and the dates of the birth are the same. The sur-

name is Sato and the date is June 10. Moreover, assume that

there are two other people whose surnames and the dates of

the birth are the same. The surname is Tanaka and the date

is May 5. Then, the relational instance D representing these

facts is as follows (see Table 5):

D(t) =





3 if t = (June 10, Sato),

2 if t = (May 5, Tanaka),

0 otherwise.

In Table 5, the numbers of tuples are shown to the right of 7→.

By definition, dom(D) = {(June 10, Sato), (May 5, Tanaka)}.
2

［Definition 2］ We define selection, projection, union, prod-

uct and difference as follows.

Selection σC(D): Let D be a relational instance over a re-

lational schema R and C be a condition. For every tuple t

over R, we define σC(D)(t) as follows:

σC(D)(t) =

{
D(t) if t satisfies C,

0 otherwise.

Projection πX(D): Let D be a relational instance over a re-

lational schema R and let X⊂=R. For every tuple t over X,

we define πX(D)(t) as follows:

πX(D)(t) =
∑

t′:t′=t[X]

D(t′).

Union D1 ∪D2: Let D1 and D2 be relational instances over

a relational schema R. For every tuple t over R, we define

(D1 ∪D2)(t) as follows:

(D1 ∪D2)(t) = D1(t) + D2(t).

Product D1 ×D2: Let D1 and D2 be relational instances

over relational schemas R1 and R2, respectively, such that

R1 ∩R2 = ∅. For every t1 over R1 and every t2 over R2, we

define (D1 ×D2)(t1t2) as follows:

(D1 ×D2)(t1t2) = D1(t1)×D2(t2),

where t1t2 denotes the tuple over R1∪R2 such that t1t2[R1] =

t1 and t1t2[R2] = t2, and × in the right-hand side denotes

the arithmetic multiplication.



Difference D1 −D2: Let D1 and D2 be relational instances

over a relational schema R. For every tuple t, we define

(D1 −D2)(t) as follows:

(D1 −D2)(t) = max(D1(t)−D2(t), 0),

where − in the right-hand side denotes the arithmetic sub-

traction. 2

2. 2 EC-tables

2. 2. 1 Syntax

Let V be a set of variables. Let
.− denote the difference

operation on non-negative integers, i.e.,

a
.− b =

{
a− b if a >= b,

0 otherwise.

A non-negative integer expression is an expression consisting

of non-negative integers, variables, and operators +, × and
.−. An atomic conditional expression is an expression in the

form of p = q, where p and q are non-negative integer expres-

sions. A conditional expression is an expression consisting of

atomic conditional expressions and Boolean connectives ¬,

∧ and ∨. A C-tuple u over R is a function defined over

R∪{con} such that u[R] is a total function from R to N ∪V

and u(con) is a conditional expression. An EC-table E over

R is a total function from the set of C-tuples over R to the set

of non-negative integer expressions such that {u | E(u) |= 0}
is finite. Let dom(E) = {u | E(u) |= 0}. If the range of an

EC-table E is N , then E is called a restricted EC-table.

2. 2. 2 Semantics

A valuation is a function from V to N . The domain of a

valuation ν is extended as follows:

• For each constant a ∈ N , let ν(a) = a.

• For non-negative integer expressions x + y, x× y and

x
.− y, let ν(x+y) = ν(x)+ν(y), ν(x×y) = ν(x)×ν(y) and

ν(x
.− y) = ν(x)

.− ν(y).

• For an atomic conditional expression l = m, let ν(l =

m) = (ν(l) = ν(m)).

• For conditional expressions ¬c, c ∧ d and c ∨ d, let

ν(¬c) = ¬ν(c), ν(c∧d) = ν(c)∧ν(d) and ν(c∨d) = ν(c)∨ν(d).

• For a C-tuple u over X, let ν(u) be a tuple over X

satisfying that for each A ∈ X, (ν(u))(A) = ν(u(A)).

• For an EC-table E and a tuple t,

ν(E)(t) =
∑

u:ν(u)=t,ν(u(con))=true

ν(E(u)).

We provide two semantics of EC-tables. The first seman-

tics is Closed World Assumption (CWA), which means that

“invisible tuples do not exist.” The other is Open World

Assumption (OWA), which means that “the existence of in-

visible tuples is unknown.”

［Definition 3］ The set repC(〈E1, · · · , En〉) of database in-

stances represented by 〈E1, · · · , En〉 under CWA is defined

as follows:

repC(〈E1, · · · , En〉)
= {〈D1, · · · , Dn〉 | D1 = ν(E1), · · · , Dn = ν(En)

for some valuation ν}.

The set repO(〈E1, · · · , En〉) of database instances repre-

sented by 〈E1, · · · , En〉 under OWA is defined as follows:

repO(〈E1, · · · , En〉)
= {〈D1, · · · , Dn〉 | D1⊃=ν(E1), · · · , Dn⊃=ν(En)

for some valuation ν}.

If n = 1, then we write repC(E1) and repO(E1) instead of

repC(〈E1〉) and repO(〈E1〉), respectively. 2

［Definition 4］ Let q be an operation on bag-based

databases with n inputs and m outputs. The operation

q is closed on EC-tables under CWA if for any sequence

〈E1, · · · , En〉 of EC-tables, there is a sequence 〈E′
1, · · · , E′

m〉
such that

repC(〈E′
1, · · · , E′

m〉) = {q(〈D1, · · · , Dn〉) |
〈D1, · · · , Dn〉 ∈ repC(〈E1, · · · , En〉)}.

The inverse of operation q is closed on EC-tables under CWA

if for any 〈E′
1, · · · , E′

m〉, there is 〈E1, · · · , En〉 such that

repC(〈E1, · · · , En〉) = {〈D1, · · · , Dn〉 |
q(〈D1, · · · , Dn〉) ∈ repC(〈E′

1, · · · , E′
m〉)}.

2

Closure properties on EC-tables under OWA and on re-

stricted EC-tables under CWA and OWA are defined in the

same way.

3. Closure properties on EC-tables

3. 1 Under CWA

In this section, we show that the inverse of projection is

not closed (Theorem 1). Then, we show that both the inverse

of union and difference are closed (Theorems 2 and 3).

［Theorem 1］ The inverse of projection is not closed on EC-

tables under CWA.

Proof : We assume that the inverse of projection is closed on

EC-tables under CWA, and derive a contradiction. Consider

an EC-table E′ (Table 6 (a)) over a relational schema {A}
with dom(E′) = {u}, u(con) = true and u(A) = E′(u) = x,

where x is a variable. From the assumption that the inverse

of projection is closed, there is an EC-table E over relational

schema {A, B} such that

repC(E) = {D | πA(D) ∈ repC(E′)}.

Let m be the number of tuples in dom(E), and let l be an

integer such that l > m. Consider an instance D shown in



Table 6 E′, D and πA(D) in Theorem 1

(a) E′

A con

x true 7→ x

(c) πA(D)

A

l 7→ l

(b) D

A B

l 1 7→ 1

l 2 7→ 1

..

.
..
.

..

.

l l 7→ 1

Table 6 (b). Since πA(D) is an instance shown in Table 6 (c),

we have πA(D) ∈ repC(E′). Hence, we have D ∈ repC(E).

By the definition of CWA,

repC(E) = {D | D = ν(E) for some valuation ν}.

Hence, there must be a valuation ν such that D = ν(E).

Since m is the number of tuples in dom(E), the number of

tuples in dom(D) is at most m. However, from Table 6 (b),

the number of tuples in dom(D) is l (> m). This is a con-

tradiction. 2

Now, we prove that the inverse of union is closed.

［Definition 5］ Let E be an EC-table over a relational

schema R. We define ∪−1(E) as a pair 〈E1, E2〉 satisfy-

ing the following conditions, where E1 and E2 are EC-tables

over R. For every u in dom(E), introduce new variables xu

and yu not appearing in dom(E). Let Φ denote the following

conditional expression:

Φ =
∧

u∈dom(E)

(xu + yu = E(u)).

For each u in dom(E), let û and ũ be C-tuples over R such

that

• û[R] = u[R], û(con) = u(con) ∧ Φ,

• ũ[R] = u[R], ũ(con) = u(con) ∧ (¬Φ).

Now, E1 and E2 are defined as follows:

E1(u
′) =

{
xu if u′=û for some u ∈ dom(E),

0 otherwise,

E2(u
′) =





yu if u′=û for some u ∈ dom(E),

E(u) if u′=ũ for some u ∈ dom(E),

0 otherwise.

2

Hereafter, we prove that D1 ∪D2 ∈ repC(E) if and only if

〈D1, D2〉 ∈ repC(∪−1(E)).

［Lemma 1］ D1 ∪ D2 ∈ repC(E) if 〈D1, D2〉 ∈
repC(∪−1(E))．

Proof : Let E be an EC-table over a relational schema R.

Let 〈E1, E2〉 be ∪−1(E). Consider instances D1 and D2 such

that 〈D1, D2〉 ∈ repC(〈E1, E2〉). There must be a valuation

ν′ such that ν′(E1) = D1 and ν′(E2) = D2. Let u ∈ dom(E).

If ν′(Φ) is true, then

ν′(E1(û)) + ν′(E2(û)) + ν′(E2(ũ))

= ν′(xu) + ν′(yu) + 0 = ν′(E(u)).

Otherwise,

ν′(E1(û)) + ν′(E2(û)) + ν′(E2(ũ))

= 0 + 0 + ν′(E(u)) = ν′(E(u)).

Hence, we have D1 ∪D2 = ν′(E) ∈ repC(E). 2

［Lemma 2］ D1 ∪ D2 ∈ repC(E) only if 〈D1, D2〉 ∈
repC(∪−1(E))．

Proof : Let E be an EC-table over a relational schema R,

and D1 and D2 be arbitrary instances such that D1 ∪
D2 ∈ repC(E). Then, there is a valuation ν such that

ν(E) = D1 ∪ D2. Let 〈E1, E2〉 be ∪−1(E). In what fol-

lows, we construct a valuation ν′ such that D1 = ν′(E1) and

D2 = ν′(E2).

ν′ is defined on the variables appearing in dom(E1) or

dom(E2) and the new variables xu and yu. For each vari-

able z appearing in dom(E1) or dom(E2), let ν′(z) = ν(z).

For the new variables xu and yu, ν′ satisfies the following

equations:

（ 1） For each tuple t ∈ dom(D1),

∑
u:(u∈dom(E))∧(ν(u)=t)∧(ν(u(con))=true))

ν′(xu) = D1(t).

（ 2） For each tuple t ∈ dom(D2),

∑
u:(u∈dom(E))∧(ν(u)=t)∧(ν(u(con))=true))

ν′(yu) = D2(t).

（ 3） For each C-tuple u ∈ dom(E),

ν′(xu) + ν′(yu) = ν(E(u)).

Before proving the existence of such ν′, we show that such

ν′ also satisfies D1 = ν′(E1) and D2 = ν′(E2). If ν′ sat-

isfies the equations of type (3), then ν′(Φ) = true. There-

fore, ν′(û(con)) = ν(u(con)) and ν′(ũ(con)) = false for each

u ∈ dom(E). Thus, the equation of type (1) becomes

D1(t) =
∑

û:(û∈dom(E1))∧(ν′(û)=t)∧(ν′(û(con))=true)

ν′(E1(û)),

and therefore, D1 = ν′(E1). Similarly, we have D2 = ν′(E2).

Now we show the existence of ν′. First, consider a C-

tuple u ∈ dom(E) such that the equation of type (1) involv-

ing xu is ν′(xu) = D1(t) (i.e., the equation contains only

one variable xu). Then, the equation of type (2) involv-

ing yu must be ν′(yu) = D2(t). Hence, ν′(xu) + ν′(yu) =

D1(t) + D2(t) = (D1 ∪D2)(t) = ν(E(u)). Next, consider C-

tuples u1, · · · , un ∈ dom(E) such that the equation of type

(1) involving xu1 is ν′(xu1) + · · · + ν′(xun) = D1(t). Then,

the equation of type (2) involving yu1 must be ν′(yu1) +

· · · + ν′(yun) = D2(t). Also, ν(E(u1)) + · · · + ν(E(un)) =



(D1 ∪ D2)(t) since D1 ∪ D2 = ν(E). We can choose the

value of ν′(xui) (1 <= i <= n) so that 0 <= ν′(xui) <= ν(E(ui))

and
∑

i
ν′(xui) = D1(t). Let ν′(yui) = ν(E(ui)) − ν′(xui).

These ν′(xui)’s and ν′(yui)’s satisfy all the equations. 2

From Lemmas 1 and 2, we obtain the following theorem.

［Theorem 2］ The inverse of union is closed on EC-tables

under CWA. 2

Next, we prove that the difference is closed.

［Definition 6］ Let E1 and E2 be EC-tables over a relational

schema R. For each pair of F1⊂=dom(E1) and F2⊂=dom(E2),

let S and T be dom(E1)∪dom(E2) and F1∪F2, respectively,

and uF1F2 be a C-tuple satisfying the following conditions:

• uF1F2 [R] = u[R] for some u ∈ F1 ∪ F2;

• uF1F2(con) is the conjunction of the following condi-

tional expressions:

–
∧

u1∈F1
u1(con),

–
∧

u2∈F2
u2(con),

–
∧

u′∈T

∧
A∈R

(uF1F2(A) = u′(A)),

–
∧

u′∈S−T

∨
A∈R

¬(uF1F2(A) = u′(A)).

Now, for each C-tuple u over R, (E1 − E2)(u) is defined as

follows:

(E1 − E2)(u)

=





∑
u1∈F1

F1(u1)
.−

∑
u2∈F2

F2(u2)

if u = uF1F2 for some F1⊂=dom(E1)

and F2⊂=dom(E2),

0 otherwise.

2

Hereafter, we prove repC(E1−E2) = {D1−D2 | 〈D1, D2〉 ∈
repC(〈E1, E2〉)}.
［Lemma 3］ repC(E1 − E2)⊃={D1 − D2 | 〈D1, D2〉 ∈
repC(〈E1, E2〉)}.
Proof : Let E1 and E2 be EC-tables over a relational schema

R. Consider an arbitrary pair 〈D1, D2〉 ∈ repC(〈E1, E2〉).
Then, there must be ν such that ν(E1) = D1, ν(E2) = D2.

Hereafter, we prove ν(E1 − E2) = D1 −D2.

• ν(E1 − E2)⊃=D1 −D2

Consider an arbitrary tuple t such that t ∈ D1 − D2.

Let F1 and F2 be {u1 | u1 ∈ dom(E1), ν(u1(con)) =

true, ν(u1[R]) = t[R]} and {u2 | u2 ∈ dom(E2), ν(u2(con)) =

true, ν(u2[R]) = t[R]}, respectively. We prove that

ν(uF1F2(con)) is true. ν(uF1F2(con)) is equal to the con-

junction of the following four expressions:

（ 1）
∧

u1∈F1
ν(u1(con)),

（ 2）
∧

u2∈F2
ν(u2(con)),

（ 3）
∧

u′∈T

∧
A∈R

(ν(uF1F2(A)) = ν(u′(A))),

（ 4）
∧

u′∈S−T

∨
A∈R

¬(ν(uF1F2(A)) = ν(u′(A))),

(1) is true because ν(u1(con)) is true in F1. (2) is also true

by the same reason. By the definition of F1 and F2, for each

C-tuple u′ ∈ T , we have ν(u′[R]) = t[R]. From Definition

6, since uF1F2 [R] is equal to some C-tuple in T , for each C-

tuple u′ ∈ T we have ν(u′[R]) = ν(uF1F2 [R]). Hence, (3)

is true. By the definition of F1 and F2, for each C-tuple

u′ ∈ S − T , we have ν(uF1F2 [R]) |= ν(u′[R]). Hence, (4) is

true. Therefore, ν(uF1F2(con)) is true. The number of tu-

ples which are equal to ν(uF1F2 [R]) is
∑

u1∈F1
ν(E1(u1)) in

D1, and is
∑

u2∈F2
ν(E2(u2)) in D2. Since

ν((E1 − E2)(uF1F2))

=
∑

u1∈F1

ν(E1(u1))
.−

∑
u2∈F2

ν(E2(u2))

= (D1 −D2)(t),

we obtain ν(E1 − E2)⊃=D1 −D2.

• ν(E1 − E2)⊂=D1 −D2

Consider an arbitrary C-tuple uF1F2 ∈ dom(E1 − E2)

such that ν(uF1F2(con)) is true. Then, by the defini-

tion of uF1F2(con), each of the four expressions (1)–(4)

above is true. From (1) and (3), if u1 ∈ F1 then

ν(u1[R]) = ν(uF1F2 [R]). From (4), if u1 /∈ F1 then

ν(u1[R]) |= ν(uF1F2 [R]). Therefore, we have F1 = {u1 |
u1 ∈ dom(E1), u1(con) = true, ν(u1[R]) = ν(uF1F2 [R])}.
In the same way, F2 = {u2 | u2 ∈ dom(E2), u2(con) =

true, ν(u2[R]) = ν(uF1F2 [R])} is derived. Hence, the number

of tuples which are equal to ν(uF1F2 [R]) is
∑

u1∈F1
ν(E1(u1))

in D1, and is
∑

u2∈F2
ν(E2(u2)) in D2. Since

ν((E1 − E2)(uF1F2))

=
∑

u1∈F1

ν(E1(u1))
.−

∑
u2∈F2

ν(E2(u2)),

we have ν(E1 − E2)⊂=D1 −D2. 2

［Lemma 4］ repC(E1 − E2)⊂={D1 − D2 | 〈D1, D2〉 ∈
repC(〈E1, E2〉)}．
Proof : Let E1 and E2 be EC-tables over a relational schema

R. Consider an arbitrary instance D′ such that D′ ∈
repC(E1 − E2). Then, there must be ν′ such that D′ =

ν′(E1 − E2). Hereafter, we prove D′ = ν′(E1)− ν′(E2).

• D′⊃
=ν′(E1)− ν′(E2)

Consider an arbitrary tuple t such that t ∈ dom(ν′(E1) −
ν′(E2)). Let F1 and F2 be {u1 | u1 ∈ dom(E1), ν

′(u1(con)) =

true, ν′(u1[R]) = t[R]} and {u2 | u2 ∈ dom(E2), ν
′(u2(con)) =

true, ν′(u2[R]) = t[R]}, respectively. We prove

ν′(uF1F2(con)) is true. ν′(uF1F2(con)) is the conjunction of

the following four expressions:

（ 1）
∧

u1∈F1
ν′(u1(con)),

（ 2）
∧

u2∈F2
ν′(u2(con)),

（ 3）
∧

u′∈T

∧
A∈R

(ν′(uF1F2(A)) = ν′(u′(A))),



（ 4）
∧

u′∈S−T

∨
A∈R

¬(ν′(uF1F2(A)) = ν′(u′(A))).

(1), (2), (3) and (4) are true in the same way as Lemma 3.

Hence, ν′(uF1F2(con)) is true. The number of tuples which

are equal to ν′(uF1F2 [R]) is
∑

u1∈F1
ν′(E1(u1)) in ν′(E1),

and is
∑

u2∈F2
ν′(E2(u2)) in ν′(E2). Since

ν′((E1 − E2)(uF1F2))

=
∑

u1∈F1

ν′(E1(u1))
.−

∑
u2∈u2

ν′(E2(u2))

= (ν′(E1)− ν′(E2))(t),

we obtain ν′(E1 − E2) = D′⊃
=ν′(E1)− ν′(E2)．

• D′⊂
=ν′(E1)− ν′(E2)

Consider an arbitrary C-tuple uF1F2 such that ν′(uF1F2(con))

is true and uF1F2 ∈ dom(E1 − E2). Then, by the definition

of uF1F2(con), each of the four expressions (1)–(4) above

is true. We have F1 = {u1 | u1 ∈ dom(E1), u1(con) =

true, ν′(u1[R]) = ν′(uF1F2 [R])} and F2 = {u2 | u2 ∈
dom(E2), u2(con) = true, ν′(u2[R]) = ν′(uF1F2 [R])} in the

same way as Lemma 3. The number of tuples which are

equal to ν′(uF1F2 [R]) is
∑

u1∈F1
ν′(E1(u1)) in ν′(E1), and is∑

u2∈F2
ν′(E2(u2)) in ν′(E2). Since

ν′((E1 − E2)(uF1F2)))

=
∑

u1∈F1

ν′(E1(u1))
.−

∑
u2∈F2

ν′(E2(u2)),

we obtain ν′(E1 − E2) = D′⊂
=ν′(E1)− ν′(E2). 2

By Lemmas 3 and 4, we obtain the following theorem.

［Theorem 3］ The difference is closed on EC-tables under

CWA. 2

3. 2 Under OWA

In this section, we show that selection and inverse of pro-

jection are not closed (Theorems 4 and 5). Then, we show

that the inverse of union is closed (Theorem 6).

［Theorem 4］ Selection is not closed on EC-tables under

OWA.

Proof : We assume that selection is closed on EC-tables un-

der OWA. Then, for each EC-table E, there is an EC-table

E′ such that

repO(E′) = {σC(D) | D ∈ repO(E)}. (1)

On the other hand, by the definition of OWA, we have

repO(E′) = {D′ | D′⊃
=ν(E′) for some valuation ν}.

Hence, for an arbitrary instance D ∈ repO(E) and tuple t

not satisfying the condition C, (D∪{t}) must be in repO(E′).

This contradicts equation (1). 2

［Theorem 5］ The inverse of projection is not closed on EC-

tables under OWA.

Table 7 E′, D, πA(D) and πA(ν(E)) in Theorem 5

(a) E′

A con

x true 7→ x

(c) πA(D)

A

l 7→ l

(d) πA(ν(E))

A

l 7→ m′

(b) D

A B

l 1 7→ 1

l 2 7→ 1

..

.
..
.

..

.

l l 7→ 1

Proof : We assume that the inverse of projection is closed on

EC-tables under OWA, and derive a contradiction. Consider

an EC-table E′ (Table 7 (a)) over a relational schema {A}
with dom(E′) = {u}, u(con) = true and u(A) = E′(u) = x,

where x is a variable. From the assumption that the inverse

of projection is closed, there is an EC-table E over relational

schema {A, B} such that

repO(E) = {D | πA(D) ∈ repO(E′)}.

Let m be the number of tuples in dom(E), and let l be an

integer such that l > m. Consider an instance D shown in

Table 7 (b). Since πA(D) is an instance shown in Table 7 (c),

we have πA(D) ∈ repO(E′). Hence, we have D ∈ repO(E).

By the definition of OWA,

repO(E) = {D | D⊃=ν(E) for some valuation ν}.

Hence, there must be a valuation ν such that D⊃=ν(E). There

are two cases:

（ 1） Suppose that D = ν(E). Since m is the number

of tuples in dom(E), the number of tuples in dom(D) is at

most m. However, from Table 7 (b), the number of tuples in

dom(D) is l (> m). This is a contradiction.

（ 2） Suppose that D ⊃ ν(E). Let m′ be the number of

tuples in dom(ν(E)). Note that m′ < l and that πA(ν(E))

must be the instance shown in Table 7 (d). Since ν(E) is also

in repO(E), πA(ν(E)) must be in repO(E′). However, there

is no valuation ν′ such that πA(ν(E))⊃=ν′(E′) since m′ < l.

That is, πA(ν(E)) /∈ repO(E′). This is a contradiction. 2

Now, we prove the inverse of union is closed.

［Theorem 6］ The inverse of union is closed on EC-tables

under OWA.

Proof : We have already proved that

D1 ∪D2 = ν(E) if and only if D1 = ν′(E1), D2 = ν′(E2)

in Theorem 2. Therefore, we conclude that

D1 ∪D2⊃=ν(E) if and only if D1⊃=ν′(E1), D2⊃=ν′(E2).

This implies that the theorem holds. 2



4. Closure properties on restricted EC-
tables

In this section, we prove the inverse of projection is closed

on restricted EC-tables under CWA. Proofs under OWA are

omitted because of the space limitation.

［Definition 7］ Let X and Y be relational schemas such that

X ∩ Y = ∅. For each pair of u ∈ dom(E) and A ∈ Y , intro-

duce new variables xA
u,1, · · · , xA

u,E(u). Let ûi (1 <= i <= E(u))

denote the tuple such that

• ûi[X] = u,

• ûi(A) = xA
u,i for each A ∈ Y , and

• ûi(con) = u(con).

π−1
X∪Y (E)(u′) is a restricted EC-table over X ∪ Y such that

π−1
X∪Y (E)(u′) =





1 if u′ = ûi for some u ∈ dom(E)

and i (1 <= i <= E(u)),

0 otherwise. 2

Hereafter, we prove πX(D) ∈ repC(E) if and only if

D ∈ repC(π−1
X∪Y (E)).

［Lemma 5］ πX(D) ∈ repC(E) only if D ∈ repC(π−1
X∪Y (E))．

Proof : Let E be a restricted EC-table over a relational

schema X. Consider an arbitrary instance D over relational

schema X ∪ Y satisfying πX(D) ∈ repC(E). Then, there

must be ν such that ν(E) = πX(D). Let E′ be π−1
X∪Y (E).

We can construct a valuation ν′ satisfying the following con-

ditions:

（ 1） The domain of ν′ is the set of variables in dom(E′).

（ 2） For each variable x in the domain of ν, ν′(x) = ν(x).

（ 3） πY (ν′(E′)) = πY (D).

The last condition holds because an arbitrary C-tuple u′ in

dom(E′) satisfies E′(u′) = 1 and each new variable in t′(Y )

appears only once. Thus, we obtain ν′(E′) = D. Hence,

D ∈ repC(π−1
X∪Y (E)) is derived.

［Lemma 6］ πX(D) ∈ repC(E) if D ∈ repC(π−1
X∪Y (E))．

Proof : Let E be a restricted EC-table over a relational

schema X. Let E′ be π−1
X∪Y (E). Consider an arbitrary in-

stance D such that D ∈ repC(E′). There must be a valu-

ation ν′(E′) = D. Then, let ν be a valuation obtained by

restricting the domain of ν′ to the set of variables appear-

ing as attribute-values of A ∈ X. Hereafter, we prove that

πX(ν′(E′)) = ν(E).

• πX(ν′(E′))⊂=ν(E)

For each C-tuple û ∈ dom(E′), if ν′(û(con)) is true then

ν(u(con)) is also true. For each attribute A ∈ X, we have

ν′(û(A)) = ν(u(A)). Since E(u) is equal to the number of

C-tuples û we obtain πX(ν′(E′))⊂=ν(E).

• πX(ν′(E′))⊃=ν(E)

For each C-tuple u ∈ dom(E), consider C-tuples ûi (1 <= i <=

E(u)) over X ∪ Y . If ν(u(con)) is true then ν′(û(con)) is

also true. For each attribute A ∈ X, we have ν′(û(A)) =

ν(u(A)). Hence, since just E(u) C-tuples u exists in

dom(E′), we obtain πX(ν′(E′))⊃=ν(E).

Hence, ν(E) = πX(D) ∈ repC(E). 2

From Lemmas 5 and 6, we obtain the following theorem.

［Theorem 7］ The inverse of projection is closed on re-

stricted EC-tables under CWA. 2

5. Conclusion and future work

In this paper, we have proved the closure properties on

EC-tables under both CWA and OWA. Next, we have pro-

posed the submodel of EC-tables, and proved the closure

properties on the model under both CWA and OWA.

As a future work, we will prove the cases where the clo-

sure properties are open, although we conjecture that they

are closed. Then, we will evaluate the computational com-

plexity of the operations and the sizes of EC-table after op-

erations. Also, we will define aggregate queries to EC-tables

and restricted EC-tables.
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