
DEWS2006 7B-o1

XML 文書の変更における機密情報漏洩の検出手法
チャットウィチェンチャイ ソムチャイ‡ 岩井原 瑞穂†

‡県立長崎シーボルト大学国際情報学部 〒851-2195 長崎県西彼杵郡長与町まなび野 1-1-1
†京都大学大学院情報学研究科社会情報学専攻 〒606-8501 京都市左京区吉田本町

E-mail: ‡somchaic＠sun.ac.jp, †iwaihara＠db.soc.i.kyoto-u.ac.jp

Abstract: To provide fine-grained access control to data in an XML document, XML access control policy is defined
based on the contents and structure of the document. In this paper, we discuss confidential data disclosure problem caused by
unsecured-update that modifies contents or structures of the document referred by the access control policy. In order to solve
this problem, we propose an algorithm that decides whether a given update request of a user against an XML document is an
unsecured-update under the user’s access control policy.

Key Words: XML documents, Access Control Policy, XPath, Tree Embedding.

1. Introduction

XML [12] is rapidly gaining popularity as a
mechanism for sharing and delivering information
among businesses, organizations, and users on the
Internet. The need of protecting confidential data in
XML documents is becoming more and more important.
A number of XML access control models are proposed
in the literature [1, 3, 5]. XACML [8] is an OASIS
standard for access control of XML documents. To
provide fine-grained access control to data in XML
document, these models use path expressions of XPath
[13] for locating sensitive nodes in XML documents.
The identification of a sensitive node is no longer
restricted to the value of the node itself but depends on
the context, the form of the path (from the root node to
that node) and the children/descendants of that node.
Hence definition of access control policy is strongly
related to the node values and the structural relationship
between nodes of XML documents. In the statistic
analysis approach [7], XPath queries to the XML
database can be checked whether having intersection
with access control policies. The result of statistic
analysis of a query is either grant, deny, or
indeterminate. In the grant case, the XML database is
accessed to answer the query. In the deny case, query
evaluation is terminated without accessing the XML
database. In the indeterminate case, the XML database
is accessed to retrieve necessary data to determine
accessibility. Updating XML data is still a research
issue [11, 2, 6]. In [11], a set of basic update operations
for both ordered and unordered XML data is proposed.
The authors describe extensions to the proposed
standard XML query language, XQuery, to incorporate

the update operations. In [2], the authors have proposed
an infrastructure for managing secure update operations
on XML data. Each subject in the collaborative group
only receives the symmetric key(s) for the portion(s)
he/she is enabled to see and/or modify. Additionally,
attached to the encrypted document, a subject receives
some control information, with the purpose of making
him/her able to locally verify the correctness of the
updates performed so far on the document, without the
need of interacting with the document server. In [6], the
authors define new action types to systematically
manage complex information of access right and to
process various update queries in an efficient manner.

As we said before, definition of access control policy
is strongly related to content and the structural
relationship between nodes of XML documents.
Confidential data disclosure problem may arise by the
update that modifies node values or the structural
relationship between nodes referred by the access
control policy.
Motivating Scenarios: Consider the sample XML
document (see company.xml) of Figure 1 stored in a
XML database server. Suppose that Jane is in charge of
a personnel officer of ABC Co., Ltd. Jane is allowed to
maintain staff information except salaries of managers
of London branch. Therefore, the security manager
defines access control policy which consists of the
following authorization rules for Jane.

R1: <Jane, company.xml, /company, rw, +>

R2: <Jane, company.xml, //branch[name="London"]

//staff[rank="Manager"]/salary, rw, –>

Authorization rule R1 states that Jane is allowed to read

and write data of the subtree rooted by company node of
company.xml. R2 states that Jane is not allowed to read
and write data of subtree rooted by salary node of the
managers of London branch. Based on R1 and R2, salary
data of Sara doesn’t appear in the view (see Figure 2)
over company.xml for Jane.
Confidential Disclosure Problem: Now, we show how
Jane reads Sara’s salary which is not allowed by the
access control policy. Jane issues to the server an
update request modifying rank value of Sara from
“Manager” to “Clerk”. By this way, Jane can read salary
of Sara by requesting the server to send her the view
over the updated company.xml. This security problem
arises because there exists no authorization rule
denying Jane to modify the data referred by the
predicates of path expression of R2 which denote the
conditions of addressing the confidential data in
company.xml.

Fig.1. An example of a sample XML document

Fig.2. A View on the XML document of Fig.1 for Jane

To the best of our knowledge, there is no previous

work discussing this security problem. The objective of
this paper is to propose an algorithm that decides
whether a given update request against an XML
document is permitted under the requestor’s access

control policy and will not cause the confidential data
disclosure. If the algorithm decides that the update
request of the requestor has no privilege to execute the
update request or the update causes the confidential
data disclosure, the algorithm will reject the update
request. Otherwise, the algorithm passes the update
request to XML database system.

The rest of the paper is organized as follows. In
Section 2, we give formal definitions of XML tree, tree
patterns, tree embedding, authorization rules and
update requests. Section 3 presents a formal definition
of the problem. In Section 4, we present an algorithm
that computes security labels that impose update
constraints for some document nodes for given XML
tree under given access control policy of a user. Section
5 presents an algorithm that decides whether given
update request is not unsecured-update request and is
permitted under the user ’s access control policy.
Finally, the last section concludes this paper.

2. Basic Concepts and Definitions
2.1 Trees and Tree Patterns

We view an XML document as an unranked (in the
sense that the number of children nodes of a particular
node can be unbounded), ordered tree. Each node in the
tree corresponds to an element, attribute or value. The
edges in the tree represent immediate
element-subelement or element-value relationships.
Attribute nodes and text values can be handled similarly
to element nodes.
Definition 2.1 An XML document is a tree t =
<Vt,Et,rt> over an infinite alphabet Σ called XML tree,
where

 Vt is the node set and Et is the edge set;
 rt ∈ Vt is the root of t; and
 each node v in Vt has a label (denoted as labelt(v))

from Σ. ▐
We assume that each text node is labeled with its

textual value. Given an XML tree t = <Vt, Et, rt>, we
say that t' = <Vt', Et ', rt '> is a subtree of t if Vt', ⊆ Vt
and Et' = (Vt',×Vt') ∩ Et.

In this paper, we discuss a fragment of XPath[13]
queries (called a Simple XPath). This fragment consists
of label tests, child axes(/), descendant axes(//), and

branches([]). Note that XPath expressions with upward
axis (e.g., parent and ancestor axis) can be transformed
into equivalent upward-axis-free ones [9], and are thus
excluded from our discussions. Simple path can be

generated by the following grammar (‘ε’ is the empty
path, ‘l’ is a label for element or attribute name, and ‘c’
is a string constant):

p ::= ε | l | /p | //p | p1/p2 | p1//p2 | p[q]
q ::= p | p θ c
θ ::= < | ≤ | = | ≥ | >

The above simple XPath expressions can be
represented by the following tree patterns.
Definition 2.2 (Tree Patterns): A tree pattern p is a
tree <Vp, Ep, rp, op, cp> over Σ, where Vp is the node set
and Ep is the edge set, and:

 each node v in Vp has a label from Σ, denoted as
labelp(v);

 rp, op ∈ Vp are the root and output node of p
respectively; and

 cp is a labelling function assigning a symbol from
{‘<’, ‘≤’, ‘=’, ‘≥’, ‘>’} to a text node.▐

We present a child edge with a single line and present a
descendant edge with a double line. For example, an
XPath query company/branch[name=“London”]//staff
[name=“Sara”]/rank is represented as a tree pattern
shown in Figure 3(b), where the dark node is the output
node. The size of a tree pattern, written as |p |, is
defined as the number of its nodes. Without loss of
generality, we refer to tree patterns as patterns in the
rest of this paper.

We now define an embedding (also called pattern
match) from a pattern to an XML tree as follows:

Definition 2.3 (Tree Embedding): Given an XML tree
t = <Vt, Et, rt> and a pattern p = <Vp, Ep, rp, op>, an
embedding from p to t is a function emb: Vp → Vt, with
following properties for every x, y ∈ Vp:

 Label-preserving: ∀x∈Vp, labelp(x)=labelt(emb(x));
 Structure-preserving: ∀e = (x, y) ∈ Ep, if labelp(e)

= ‘/’, emb(x) is a child of emb(y) in t ; otherwise,
emb(x) is a descendent of emb(y) in t; and

 Value-matching: ∀x∈Vp where emb(x)∈Vt is a text
node, the Boolean expression: labelt(emb(x)) cp(x)
labelp(x) is true. ▐

The embedding emb maps the output node op of p to a

node emb(op) in t. We say that the subtree sub(t, p, emb)
rooted by emb(op) of t is the result of embedding. Note
that sub(t, p, emb) can also be seen as an XML tree. As
an example, dashed lines between Figure 3(a) and (b)
shows an embedding and its result is shown in Figure

3(c). Actually, there could be more than one embedding
from p to t. We define the result of p over t, denoted as
p(t), as the union of results of all embeddings, i.e.,
∪emb∈EMB{sub(t, p, emb)} where EMB is the set
including all embeddings from p to t. Furthermore, we
define an empty pattern denoted by ε as the result of
evaluating ε over any XML tree is empty.

Fig.3. Embedding of the tree pattern p on the view v.

2.2 Authorization Rules
We use the term access control policy, or simply policy,
for a set of authorization rules. Each authorization rule
has the following format:

<subject, doc-id, path, priv, sign>, where

 subject is a user name, a user group, or a role[10];

 doc-id denotes an XML document identifier;

 path denotes a path expression of XPath

identifying nodes within the XML document;

 priv is either read denoted by r or read/write

denoted by rw; and

 sign ∈ {‘+’, ‘–’}, where ‘+’ denotes grant and ‘–’
denotes denial.

Authorization can be positive (granting access) or

negative (denying access) to document nodes of an

XML document. The read privilege allows a subject to

view a document node. The write privilege allows a

subject to append/remove a document node, and modify

content of a document node. Authorization specified on

a node is propagated to its all descendant nodes. The

possibility of specifying authorization with different

sign introduces potential conflicts among authorization

rules. Here, the conflict resolution of the model is

based on the following policies: Descendant-take-

precedence: An authorization rule specified at a given

level in the document hierarchy prevails over the

authorization rules specified at higher levels; and

Denial-take-precedence: In case conflicts are not

solved by descendant-take-precedence policy, the

authorization rule with negative sign takes precedence.

We apply denial-by-default policy that denies any

access request for a document node whose

authorization cannot be derived from the authorization

rules defined by the security manager.

2.3 Update Requests
We give a definition of an update request as follows.

<subject, op, doc-id, path, content>, where

 subject is a user name, a user group, or a role;
 op is remove, append, or change operation; and
 doc-id is an XML document identifier;
 path denotes a path expression of XPath

identifying the context nodes within the XML tree;
and

 content denotes either (i) name of an element /
attribute, or (ii) textual value of the node to be
written.

Table 1 explains details of the operation argument of
an update request and necessary privileges of a subject
for executing the operation. In this paper, for simplicity
we assume that the documents before and after update
hold the same doc-id. We also assume that a subject is
allowed to append a node if the subject has read/write
privilege on the node so that the subject can confirm
the write result.

3. Problem Formalization
Let t be an XML tree before update, and t' be the

XML tree after update. To address the confidential data
disclosure problem in t', we need to identify
information used to define how a node of t is mapped
to that of t'. We call this information a tree mapping,
which is defined as follow.

Let Ndel be the set of deleted nodes of t, and Nadd be
the set of nodes that are newly added to t'. We call N –

Ndel the set of source nodes. We also call N' – Nadd as
the set of target nodes.

Definition 3.1 (Tree Mapping): Let t be an XML tree

before update and t' be the XML tree after executing

update u. Let Nt be the set of source nodes of t, and Nt'

be the set of target nodes of t'. tmapu: Nt →Nt' is a total

mapping from Nt to Nt' by u. ▐

operation content Necessary
privilege

The append
operation appends
a new node as a
child of the
context node.

Element
name,
attribute
name, or
textual
value of the
new node.

The read/write
privilege on the
new node. The
read privilege on
the parent node of
the selected
context node.

The remove
operation allows
the subtree rooted
by the selected
context node to
be removed.

 The read/write
privileges on the
selected context
node and its all
descendant nodes.

The change
operation allows
the content of the
selected context
node to be
changed.

The new
textual
value.

Combinations of
necessary
privilege for
remove and
append
operations.

Table 1: Necessary privileges for executing

an update request

We define an unsecured-update request that results
in confidential data disclosure as follows.
Definition 3.2 (Unsecured-Update Request): Let Nt be
the set of source nodes of XML tree t before update,
and Nt' be the set of target nodes of XML tree t' after
update, and tmapu: Nt →Nt' is a total mapping from Nt
to Nt' by update request u. Let Ps be an access control
policy of subject s on XML tree t, denys,r,t∈Nt be the
node set of t that is not allowed to read by s under Ps,
and permits,r, t '∈Nt' be the node set of t' that is allowed
to read by s under Ps. u is an unsecured-update request
under Ps if there exist v∈denys,r, t and v'∈permits,r, t '
such that v' = tmapu(v) after executing u. ▐

For example, <Jane, change, company.xml, //staff
[name=“Sara”]/rank, “Clerk”> is an unsecured-update
request under access control policy P = {R1, R2}
because salary of Sara which is confidential
information becomes readable by Jane after executing
this update request.

We use the following notations for defining

Algorithm LabelTree (t, Ps)
Input: 1. XML tree t = <Vt, Et, rt>, and
 2. Access control policy Ps={R1, R2, .., Rm} of subject s on t.
Output: XML tree t with security labels.
Method:

Step1: Initialize read and write labels of each v ∈Vt with ε.
Step2: For each Ri = <s, doc-idi, pathi, privi, signi> ∈ Ps, where 1 ≤ i ≤m do {
Step3: Let p be the tree pattern of pathi, and p(t) be the set of nodes of t addressed by p.

 Compute p(t).
Step4: For each uk ∈ p(t) do {
Step5: If (privi = ‘r’ or privi = ‘rw’) then {
Step6: If rlbl(uk) = ε then rlbl(uk) = <r, signi, 1>
Step7: else If sign of rlbl(uk) is ‘+’ and signi = ‘–’ then

 rlbl(uk) = <r,–,1> /* denial-take-precedence*/
Step8: }
Step9: If (privi = ‘w’ or privi = ‘rw’) then {
Step10: If wlbl(uk) = ε then wlbl(uk) = <w, signi, 1>
Step11: else If sign of wlbl(uk) is ‘+’ and signi = ‘–’ then

 wlbl(uk) = <w,–,1> /* denial-take-precedence*/
Step12: }
Step13: If signi = ‘–’ then {
Step14: Let embk be the embedding from p = <Vp, Ep, rp, op> to t, where uk = embk(op).
Step15: For each v ∈ Vp and v ≠ op do
Step16: wlbl(embk(v)) = <w,–,0> /* update constraint for preventing data disclosure to uk */

 }
 }
 }

Step17: return t.

Fig.4. The LabelTree

properties of remove, append and change requests
which are not unsecured update requests.
Definition 3.5 (Relevant Node Set): Let t be an XML
tree, and Path = {p1, p2, .., pm} be a set of path
expressions of authorization rules of access control
policy P. Relevant node set of t under P, denoted by
RelNode(t, Path), is the set of nodes such that:
RelNode(t, Path) = {v | v∈η(t, pi, emb), ∀emb∈EMBi,
∀pi∈ Path}, where 1≤i≤m, η(t, pi, emb) is the set of
nodes of t mapped from pi by emb, and EMBi is the set
of embeddings from pi to t. ▐

Lemma 1: (Secured Remove Request): Let t be an
XML tree, P be access control policy of s on t. Let
Path′ be the set of path expressions of authorization
rules with negative sign, and RelNode(t, Path′) be the
relevant node set of t under Path′. <s, “remove”, t, p, >
is not the unsecured update request under P if the
following conditions hold:

1. ∀v∈τ(t, p) writeP(v) = ‘+’; and
2. p(t) ∩ RelNode(t, Path′) = ∅,

where τ(t, p) is the node set of the subtrees rooted by
p(t). Here we call <s, “remove”, t, p, > holding the
above conditions, secured remove request for t under P.

▐

Definition 3.6 (Relevant Paths): Let t = <Vt, Et, rt> be
an XML tree, and <s, “append”, t, p, content> be an
append request. Let Path = {p1, p2, .., pm} be a set of
path expressions of authorization rules of access
control policy P. Relevant paths of p for appending
content under P, denoted by RelPath(p, content, P), is
the subset of Path of authorization rules of P where
each q of the subset holds the following properties:

(1) q has a leaf node v where the Boolean expression:
labelt(v) cq(v) content is true; and

(2) the leaf node v has the parent node whose label is
the same as that of output node of p. ▐

We denote SubRelPath(p, content, P) the set of path

expressions computed from path expressions of
RelPath(p, content, P) by deleting its node v (see
condition 1 and 2 of definition 3.4).
Lemma 2 (Secured Append Request): Let t = <Vt, Et,
rt> be an XML tree, Let P′ and P″ be the set of
authorization rules with negative sign and positive sign,
respectively, where P′ ∪ P″ = P. <s, “append”, t, p,
content> is not the unsecured append request under P if

the following conditions hold:
(1) ∀v∈p(t) readP(v) = ‘+’ ;
(2) One of the following conditions hold:

2.1 ∀v∈ p(t) writeP(v) = ‘+’ ; or
2.2 ∃q″∈SubRelPath(p, content, P″) s.t. q″ (t) ⊇

p(t); or
(3) ¬∃q′∈SubRelPath(p, content, P′) s.t. q′ (t) ∩ p(t) ≠

∅; and
(4) p(t) ∩ RelNode(t, SubRelPath(p, content, P)) =

∅.
Here we call <s, “append”, t, p, content> holding the

above conditions, secured append request for t under Ps.
▐

Lemma 3: (Secured Change Request): Let t be an
XML tree, and Ps = P′s∪P″s be access control policy of
subject s, and RelNode(t, P′s) be the relevant node set
of t under P′s. <s, “change”, t, p, content> is not the
unsecured update request under Ps if the following
conditions hold:
(1) ∀v∈ p(t) writeP(v) = ‘+’;
(2) ∃q″∈SubRelPath(p, content, P″) s.t. q″ (t) ⊇ p(t);
(3) ¬∃q′∈SubRelPath(p, content, P′) s.t. q′ (t) ∩ p(t)

≠ ∅; and
(4) p(t) ∩ RelNode(t, SubRelPath(p, content, P)) =

∅.
Here we call <s, “change”, t, p, content> holding the
above conditions, secured change request for t under
Ps.▐

4. Security Labelling Algorithm

We first specify the authorization types of document
nodes by security labels that are defined as follows.
Definition 4.1 (Security Labels): A security label for a
node n of XML tree t = <Vt, Et, rt> is represented by

<priv, sign, flag>, where
 priv is either read denoted by r or write denoted

by w;

 sign ∈ {‘+’, ‘–’}, where ‘+’ denotes grant and ‘–’
denotes denial; and

 flag ∈ {1, 0} denotes type of authorization
propagation, where value 1 denotes cascade, and

value 0 denotes no-cascade.
We call a security label with read privilege read label.
We define rlbl: Vt→{<r,+,0>, <r,+,1>, <r,–,0>,
<r,–,1>, ε} is a total mapping from nodes of Vt to the
read labels, where ε denotes undefined authorization.
Note that rlbl(n) denotes the read label on node n. We

call a security label with read privilege read label. We
define wlbl: Vt → {<w,+,0>, <w,+,1>, <w,–,0>,
<w,–,1>, ε} is a total mapping from nodes of Vt to the
write labels. wlbl(n) denotes the write label on node n.
▐

Given an XML tree t and access control policy Ps of
user s, we propose the LabelTree algorithm (see Figure
4) that computes read and write labels for only the
document nodes that satisfied by path expressions of
authorization rules of Ps. For each authorization rule,
step4 thru step16 of LabelTree assign security labels to
the nodes addressed by the path expression pathi of the
rule. If sign of the rule is negative, LabelTree also
assigns security labels of negative sign and no-cascade
to the nodes of t corresponding to nodes of pathi in
order to prevent unsecured-update.
Figure 5 shows the XML tree of Fig.1 after labelling

read and write security labels by LabelTree under

access control policy P = {R1, R2}. Notice LabelTree
generates write labels with negative sign for the nodes

that are mapped from tree pattern p depicted in Fig.

2(b) by tree embedding. As Jane is not allowed to

modify names/values of these nodes and structural

relationship among these nodes, the confidential data

disclosure will not occur.

Theorem 1: Given an XML tree t = <Vt, Et, rt>, an
access control policy Ps = {R1, R2, .., Rn} for subject s,
where Ri = <s, doc-idi, pi, privi, signi>, LabelTree
computes security labels for document nodes of t in
O(|t |4• |Ps |) where |t | is the size of t and |Ps | is number of
authorization rules of Ps.
Proof: Gottlob et al. [4] have proposed the
polynomial-time algorithms for XPath processing by

company

branch
name

name

London

staffs

staff

name

Sara Manager

salary

62000

rank

ClerkJohn 25000

name salaryrank

staff

sid

s0125

sid

s0478

<r,+,1>
<w,+,1>

<w, ,0>

<w, ,0>

<r, ,1>
<w, ,0>

<w, ,0>

<w, ,0>

<w, ,0>

<w, ,0>

<w, ,0>
ABC Co.,Ltd

Fig.5. The XML tree after labelling read and write
security labels by the LabelTree algorithm

Algorithm UpdReqCheck (t, P, updreq, Permit)
Input:
 1. XML tree t = <Vt, Et, rt> with read and write labels,
 2. Access policy P = P′ ∪ P″ of subject s on t, and
 3. Update request updreq of s on t, where updreq = <s, op, doc-id, p, content>.
Output:

 Permit whose value denotes whether the update request should be permitted.
Method:
Step1: Let Path′ and Path″ be the sets of path expressions of P′ and P″, respectively.

Permit = FALSE.
Step2: Compute p(t) where p(t) be the set of nodes of t that is located by p.
Step3: For each vi ∈ p(t) do {
Step4: If op = ‘remove’ or op = ‘change’ then {
Step5: If (s has no write privilege on vi and all descendant nodes vi) or

 (p(t) ∩ RelNode(t, Path′) ≠ ∅) then return Permit
Step6: }
Step7: If op = ‘append’ or op = ‘change’ then {
Step8: If readp(vi) = ‘−’ then return Permit
Step9: If ¬∃q″∈SubRelPath(p, content, P″) s.t. q″ (t) ⊇ p(t) or

 ∃q′∈SubRelPath(p, content, P′) s.t. q′ (t) ∩ p(t) ≠ ∅ then return Permit
Step10: If p(t) ∩ RelNode(t, SubRelPath(p, content, P)) ≠ ∅ then return Permit

}
Step11: }
Step12: Permit = TRUE
Step13: return Permit

Fig. 5: The UpdReqCheck algorithm

using a form of dynamic programming. Based on this,
computation of the node set satisfied by the Extended
Wadler Fragment [4], which covers our simple XPath
expression, is processed in time O(|t |2• |p |2), where |t |
denotes the size of the XML document tree and |p | is
the size of the query. Therefore, the complexity of
step3 is O(|t |2• |p |2). Since |p | and |p(t) | can be as big as
|t |, step4 thru step16 are executed |t |• |Ps |

 times in the
worst case. Then, the complexity of LabelTree is
bounded to O(|t |4• |Ps |) where |Ps | is the number of
authorization rules of access control policy Ps. ▐

5. Update Request Checking Algorithm

Based on security labels of document nodes computed
by the LabelTree algorithm from access control policy
of a user, we propose the UpdReqCheck algorithm (see
Figure 6) that decides whether given update request
updreq on XML tree t is not an unsecured-update
request under access control Ps of subject s on t.

Theorem 2: Given an XML tree t = <Vt, Et, rt> with
security labels, access control policy Ps of s on XML
tree t, and an update request updreq <s, op, doc-id, p,
content>, UpdReqCheck decides whether updreq is not
an unsecured-update request under Ps in
O(|t |2• |p |2• |Ps |• |p(t) |), where |t | is the size of t, |p | is the

size of query of updreq, |Ps | is number of authorization
rules of Ps, and |p(t) | is number of nodes addressed by
p.
Proof: Computation of p(t) at step2 can be done in
O(|t |2• |p |2). Step3 is processed |p(t) | times. Time
complexity of processing step4 and step13 is bounded
to that of checking insert-before operation request.
Time complexity of step9-step11 is O(|t |2• |p |2• |Ps |). As
total time complexity of step1-step15 is
O(|t |2• |p |2+ |t |2• |p |2• |Ps |• |p(t) |), time complexity of
UpdReqCheck is bounded to O(|t |2• |p |2• |Ps |• |p(t) |). ▐

6. Conclusions and Future Work

As authorization rules of existing XML access
control model are defined based on node values and the
structural relationship between nodes of XML
documents, confidential data disclosure problem may
arise by the unsecured-update that modifies values or
the structural relationship between nodes referred by
the authorization rules. In order to solve this problem,
this paper has formalized the problem and proposed an
algorithm that decides whether a given update request
against an XML document is not unsecured-update
request and is permitted under the requestor’s access
control policy.

We are going to investigate the possibility of

utilizing DTDs or schemas of XML documents to
reduce the complexity of computing security labels for
XML tree and the complexity of deciding whether a
given update request is the unsecured-update request.

References

[1] E. Bertino, S. Castano, E. Ferrari, M. Mesiti, “Specifying

and Enforcing Access Control Policies for XML Document

Sources,” WWW Journal, vol.3, n.3, 2000.

[2] E. Bertino, G. Mella, G. Correndo, E. Ferrari. “An

infrastructure for managing secure update operations on XML

data,” In Proc. of 8th ACM Symposium on Access Control

Models and Technologies (SACMAT03), pp.110-122, 2003.

[3] E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, P.

Samarati, “A Fine-Grained Access Control System for XML

Documents,” ACM TISSEC, vol. 5, no. 2, 2002.

[4] G. Gottlob, C. Koch, and R. Pichler, “XPath Query

Evaluation: Improving Time and Space Efficiency”. In Proc.

19th IEEE International Conference on Data Engineering

(ICDE'03), 379-390, 2003.

[5] M. Kudo and S. Hada, “XML Document Security based on

Provisional Authorization,” Proc.7th ACM Conf. Computer

and Communications Security, pp. 87-96, 2000.

[6] C.H. Lim, S. Park, S.H. Son, “Access control of XML

documents considering update operations”, In Proc. of the

2003 ACM workshop on XML security, pp. 49-59, 2003.

[7] M. Murata, A. Tozawa, M. Kudo, S. Hada, “XML Access

Control Using Static Analysis,” Proc. ACM Conf. Computer

and Communications Security, pp. 73–84, 2003.

[8] OASIS XACML Technical Committee, “eXtensible Access

Control Markup Language (XACML) Version 2.0,”

http://www.oasis-open.org/specs/index.php#xacmlv2.0 (Feb

2005).

[9] D. Olteanu, H. Meuss, T. Furche, F. Bry, “XPath: Looking

Forward,” In XML-Based Data Management and Multimedia

Engineering, EDBT Workshop, LNCS 2490, 109-127, 2002.

[10] R. Sandhu, E. Coyne, H. Feinstein, and C. Youman,

“Role-Based Access Control Models,” IEEE Computer, 29(2),

pp.38-47, 1996.

[11] I. Tatarinov, Zachary G. Yves, Alon Y. Halevy, Daniel S.

Weld. “Updating XML”. In ACM SIGMOD 2001 May 21-24,

Santa Barbara, California, USA.

[12] W3C (2000). Extensible Markup Language (XML) 1.0

(Second Edition). Available at http://www.w3c.org/TR/

REC-xml (Oct 2000).

[13] W3C (1999). XML Path Language (XPath) Version 1.0.

Available at http://www.w3c.org/TR/xpath (Nov 1999).

