

Efficient XML Query Rewriting over the Multiple XML Views
Jun Gao, Dongqing Yang, Tengjiao Wang

The School of Electronic Engineering and Computer Science,Peking University ,100871 Beijing, China

{gaojun, dqyang, tjwang }@ pku.edu.cn
Abstract XML query rewriting in the distributed computing environment receives high attention recently. Different from

existing work, we focus on the query rewriting in the cases that there are multiple views at the client side. We design two data
structures to manage the multiple XML views. MPTree is constructed from the main path of the XML views to generate the
candidate query rewriting plan. PPLattice is constructed from the predicate sub trees of the XPath views to validate the
candidate query rewriting plan. Based on MPtree and PPLattice, the query rewriting plans search space over multiple views is
pruned significantly and the high cost of the query containment can be reduced.

Keyword XML，Rewrite，View，Query

1. Introduction

With XML becoming the information representation
and exchange standard in the Internet, XML is used in the
distributed computing environment increasingly. Due to
the high cost of the network transfer and the complexity
of the XML query evaluation, the cached XML views at
the client side play important roles in the query
optimization. When a user submits a query to the remote
server, system attempts to answer the query using the
views at the client side directly[2]. In this way, the
response time in the distributed computing environment
can be reduced significantly.

The query rewriting problem has been studied
extensively in the relational database context. Due to the
complex features supported, the XML query rewriting
faces more challenge than the relational query. The
current study [9,10] shows that the XML query
containment – one of the important steps in the XML
query rewriting - is Co-NP problem even when XPath
supports the limited features including {//,/,*,[]}.

Many methods are proposed to handle the XML query
rewriting over the XML view. The query rewriting
generation at the server side are studied [1] to generate
the sound but incomplete plan over XPath {//,/,|,*,[]} in a
polynomial time if the index can be regarded as the
special case of the XML materialized view. The XPath
query rewriting problem at the client side [2] is studied to
show the special cases of XPath with restrictive features
when the query rewriting plan is sound and correct.

Due to the different frequent query patterns, there may
be multiple XML views cached in the client side. The
XPath views selection problem has been discussed [3]
over hundreds of views. Although the method proposed in
[2] can be extended to support multiple views via

combining the query rewriting results over each view with
UNION operation, the whole process surfers the
performance problem. Each view has to be handled to
generate the candidate plan separately. In addition, the
time consuming rewriting plan validation process has to
be implemented for each view. We use the following
example to demonstrate the challenges in the query
rewriting over the multiple views.

Example 1: Given a NASA XML database [12] and a
query that looks for the partNumber(part) of a
dataset(data) in which the abstract(abs) is available in at
least one descriptions(dess) that has nested
description(des) is writing in XPath:

q1:/data[dess [./abs][./des]/title/part;
Assuming the following three materialized views are

defined over the database:
v1: /data [dess[./abs/para][./des][detail]/title [foot];
v2: /*[dess [./abs/para][.//des]]/title[foot];
v3: /data [//dess[./abs/para][./des][detail]/title [foot];
Notice that the XML views may share the same sub

paths. For example, v2 and v3 share the same sub part
/data/title/foot. In the case that the same sub path appears
in the main path, there are may be redundant cost in the
query rewriting plan generation. In the case that the same
sub path appears in the predicate sub tree, there are may
be redundant cost in the query rewriting plans validation.

In order to prune the query rewriting plans space over
the multiple XML views and improve the efficiency of the
query rewriting plan generation, we propose a framework
to organize the multiple XML views in a more
manageable way. More specifically, our contributions can
be summarized as follows:

 We propose MPTree to manage the main paths of
the different XML views. Based on MPTree, we

generate the query rewriting candidate plan
efficiently and reduce the redundant computation
among them.

 We propose PPLattice to organize the predicate
sub trees from each XML views. Each node in
PPLattice represents single path from the root
node to the leaf node in the predicate sub tree.
The edge in the PPLattice represents the
containment relationship between the single paths
which is pre-computed. Based on the PPLattice,
we can locate more restrictive single XPaths for
the XPath query in the XML views.

 After the pruning strategies over the MPTree and
PPLattice, we propose a sound method to validate
the query rewriting plans as a whole. Compared
with the existing methods, only the views passing
the requirement of the MPTree and PPLattice will
be considered in the whole tree validation.

The rest of the paper is organized as follows: we
introduces the background knowledge and define the
problem in section 2; we propose MPTree and PPLattice
in section 3; we discuss the whole process to generate the
rewriting plan over the multiple views based on MPTree
and PPLattice in section 4; related work is discussed in
section 5; the paper is summarized and the future work is
discussed in section 6.

2. Background Knowledge and Problem
Definition

2.1. XPath
XPath is a basic mechanism to select nodes in the XML

tree. It can be represented by the XPath tree pattern [9],
which can be defined as:

Definition 1: (XPath tree pattern). the XPath tree
pattern can be represented by a query pattern Q=(N,E,r),
where N represents the set of element nodes, E represents
the relationship between the elements in N, for each e∈E,
type(e)=AD (short for ancestor/descendant) or PC (short
for parent/child); r denotes the root node of the tree;
Suppose L denote to the leaf nodes of the tree, given an
element n∈L, n is called return node if n is the root
element of the query result; the path from the root node to
the return node is called the main path; The path from the
root node to any leaf node is called the single XPath
query.

The following are the tree patterns of the query q1 and
view v1, v2, v3 in Example 1.

q2

q4 q6

q3

q5

dess

abs despart

data

title

q8

q10 q12

q9

q11

dess

abs

des

para

detail

q13

14

data

title

q16

q18 q20

q17

q19

desc

abs desfoot

*

title

foot

q22

q24 q26

q23

q25

dess

abs

des

para

detail

q27

q28

data

title

foot

q1

v2

v1

v3

r1

q1

r2

q7

q15
q21

r3
r4

Fig. 1: XPath Tree Pattern for q1, v1, v2, v3

Definition 2: (The restrictiveness of XPath) Given two
XPath p1 and p2, if we build the nodes mapping M from
the XPath tree p1 to the XPath tree p2, for each sub path
p11 from n11 to n12 in p1, the mapped sub path M(p11) from
M(n11) to M(n12) in p2, M(p11) is contained in p11, we call
p2 is more restrictive than p1.

Given XPath p1 and p1, the restrictiveness comes from
two aspects. In one case, the length p2 is much longer
than that of p1. In another case, the path set P for p2 is a
sub set of those of the p1. In both cases, we can establish
the containment mapping from p1 to p2. We also notice
that the containment is transitive. That is, if p1 is more
restrictive than p2, and p2 is more restrictive than p3, p1 is
more restrictive than p3.

2.2. View-based Query Answering
The problem of answering queries using the data in the

existing materialized views has been extensively studied
for the past decade. The related problems can be formally
defined as follows [8]:

Definition 3: (Query rewriting plan). Given a query q
over a database D, and a set of view V={v1,…vn} over the
same database D, find a query q1 which can be evaluated
on the view set V, where q1(V)⊆q(D), q1(V) denotes that
the results of query q1 evaluated on the view set V; q(D)
denotes that the results of q evaluated on the data D;

Two notations, query containment and query equivalent,

are used to validate the query rewriting plan.
Definition 4: (Query Containment and Equivalence). A

query q1 is said to be contained in a query q2, denoted by
q1⊆q2, if for any database D, the results computed from q1
are a subset of those computed for q2, i.e., q1(D)⊆q2(D).
A query q1 is said to be equivalence of a query q2, if for
any database D, q1(D)⊆q2(D) and q1(D)⊇q2(D).

Definition 5: (XML containment mapping). Given a
XPath query tree pattern q, a XPath view tree pattern v,
view is more restrictive than the query if we can establish
the mapping from the query to the view, where the sub
path p1 in the view is more restrictive than M(p1) in
query.

From the above definition, we notice that for each
single XPath in the query, we can find at least one more
restrictive single XPath in the view. Such requirement can
be used as one of the heuristic information in the query
rewriting. That is, if we can not find a more restrictive
single XPath in the view v for the XPath query q, the
view v can not be used to answer the query q without
further validation.

2.3. The Problem Definition
With the above definitions, the problem in this paper

can be defined as follow:
Given an XML Database T, XML structure schema D, a

set of pre-defined materialized views V over the schema D,
and an XPath{[],//,*,/} query Q, , how to generate valid
query rewriting plan answering plan for views set V
efficiently?

3. Query Rewriting over the Multiple Views
3.1. System Infrastructure

Recall the basic process to generate the query rewriting
plan over the single XML view first. Given one XPath
view and one XPath query, we try to match the main path
of the query against the main path of the view. If matched,
we generate the candidate query rewriting plan, which can
be further validated with the consideration of the
predicate sub-tree.

The following figure illustrates the mapping of the
landmark nodes from the XPath query tree pattern to the
XPath view tree pattern. One node n in the main path of
the XPath called the separate node divides the main path
into a prefix path and a suffix path. The prefix path is less
restrictive than the main path of the XML view.
Accordingly, the branching predicate associated with the
original XPath expression is divided into two sets: the
outer predicates – the predicates on the nodes in the
prefix path, including the separate node; and the inner

predicates – the predicates on the nodes in the suffix path.
The sub-tree rooted at the separate node is called the
inner predicate sub-tree. Outer predicate sub-tree is the
query pattern tree subtracts the inner predicate sub-tree.
The outer predicate sub tree in query is less restrictive
than that of the XML view.

return node

return node

root noderoot node

q1

q2

v1

seperate
node

outer predicate sub
tree

inner predicate
 sub tree

outer
predicate sub tree

inner predicate
sub tree

Fig. 2: Mapping from the query definition to view
Due to the different roles of the single XPath in the

main path and the predicate sub tree, we build two XML
view management auxiliary structures: MPTree and
PPLattice to organize the XML in a more manageable way.
MPTree is constructed from the main path of the XML
views set to generate the query rewriting candidate plans.
PPLattice is constructed from the predicates sub tree to
validate the query rewriting candidate plan. Both MPTree
and PPLattice can reduce the search space in the query
rewriting plans over the multiple views. The framework
of our method can be illustrated in the following figures:

MPTree
Construction

XML Views

PPLatticen
Construction

MPTree

PPLattice

Candidate Views Generation

XPath Query

Candidate Query Rewriting
Plan Validation

Candidate
Plans

Query Rewriting Plan
Generation

Candidate
Views

Rewriting Plan

Fig. 3: the framework of our method.

From Fig.3, we generate the candidate query rewriting
plans from the MPTree which is constructed from the
main path of the XML view for a given XPath query. We
validate the candidate query rewriting plans with the
PPLattice at the first stage. If the candidate plans pass the
validation at the first stage with the PPLattice, we
validate the query rewriting plan as a whole tree at the
next stage and generate the final query rewriting plan.

3.2. MPTree
MPTree contains the information of main paths from all

existing views. Intuitionally, MPTree can be generated via
the merging the main path of all XPath views in a top
down fashion.

Definition 6: The MPTree T=(V,E,r) can be constructed
from XPaths set P={p1,..pn}. For each node n in XPath
p i∈{p1,..pn}, if there is one node n1 in XPath p j∈{p1,..pn}
i≠j, the path from the root node in p i to node n is the same
as the path from the root node in p j to node n1, we merge
n1 and n together. r is the root node of any XPath p. We
also annotate the return node of XPath p i with the related
id i.

5

title

2
data

6

title

3
*

4

title

1

v3 v1 v2

Fig. 4: the sample of MPTree
From Fig.4, we notice that sub path /data is shared by

v1 and v3. If we generate the query rewriting plan against
the XML views on MPTree, the sub path /data can be
considered only once.

Two main operations are related with the MPTree. The
first one is the construction of MPTree. This operation
can be implemented in the same way as the definition of
MPTree, which can be implemented in linear time in the
size of the nodes of the main path of the XPath views.
The second one is to generate the candidate view
rewriting plan from the MPTree. The operation can be
handled in the following way:

Given an XPath query q with the single XPath tree
Tq=(Vq,Eq,rq) and the MPTree MT=(Vv,Ev,rv) which is
constructed from the main paths of all views, we
construct the composite tree R=(Vp,Ep,rp) over MT and Tq
by the following rules: (1) the root node rp of R can be
initialized as the rp=[rq,rv]. (2) Given the node
n1=[nq1,nv1]∈Vp, (nq1, nq2)∈Eq, (nv1, nv2)∈Ev,

 Type(nq1,nq 2)= "PC" Type(nq1,nq 2)= "AD"

Type(nv1,
nv2)= "PC"

n2=[nq2,nv2] is created
with type(n1,n2)="PC"
if the element of nq2
and nv2 are the same

n2=[nq2,nv1] is created
with the type
(n1,n2)="PC" and n3 =
[nq 2,nv2] is created
with the
type(n1,n3)="AD" if
the element of nq 2 and

nv2 are the same,

Type(nv1,
nv2)= "AD"

 n2=[nq2,nv1] is
created with the type
(n1,n2)="PC" and n3 =
[nq 2,nv2] is created
with the
type(n1,n3)="AD" if
the element of nq 2 and
nv2 are the same,

Table 1: the Composition Rules

For each main paths of XML view v in the MPTree, we
check whether there is one node (n1, n2) in the composite
tree R, where n2 is the return node for v, we know that n1
is a separate node in query main path q for v. In other
words, the suffix path with separate node n1 in q can be
used as the query q rewriting plan for view v. From the
composition rules, we know that the suffix path in the
query is less restrictive that the main path of the view.

3.3. The PPLattice
We further check the validation of the candidate query

rewriting plan by establishing the containment mapping
from the query outer predicate tree to the view outer
predicate tree. From the property of the containment
mapping, we can find a mapped single XPath in the view
for each single XPath in the query if one valid mapping
exists for the whole tree pattern. In other words, if we can
not find a mapped single XPath for the query tree, the
view will not be contained in query. In order to speed up
the validation of the candidate query rewriting plan and
reduce the cost of the validation test for the whole tree,
we can detect the restrictiveness between the single XPath
in XPath view and single XPath in XPath query at the
first stage. If it is not satisfied, the view will not be
considered further in the following step.

The mapping from the single path p1 in the query to the
single path p2 to the view indicates that p1 is more
restrictive than p2. From the existing study [9], the
containment test can be implemented in a polynomial time
when the single XPath support {//,/,*}. We can exploit
such a feature to speed up the query containment for the
single XPath.

In order to detect whether there are single XPaths in
XPath views more restrictive than single XPaths in XPath
query efficiently, we propose the structure of PPLattice:

Definition 7: PPLattice G=(V,E,T,B) can be constructed
from XPaths set P={p1,..pn}. Each node n∈V represents
the different single XPath p in each XPath in P. The
single XPath expression n[S]∈S is annotated on the node n.
For node n1∈V and node n2∈V, if there is no node n3∈V,
where n1 is more restrictive than n2, n1 is more restrictive

than n3, n3 is more restrictive than n2, we build an edge
e∈E from node n2 to n1. The top nodes set T include the
nodes without the parent node. The bottom nodes set B
includes the nodes without the child nodes.

/data/dess/detail /data/dess/des/data/dess/abs/para

/*/dess//des/data/dess/abs
/data//dess/

des
/data//dess/detail

/data//dess/abs/
para

Fig. 5: the sample of the PPLattice
As for a node n in PPLattice, there maybe several

parent nodes. Therefore, the PPLattice does not take the
form of tree structure. In addition, we notice that there is
no nodes sequence (n1, n2), (n2, n3), (n1, n3) in PPLattice.
Since we can infer that the path for n3 is more restrictive
than that of n1 from other links transitivity, we need not
construct link from n1 to n3. Therefore, the edge in
PPLattice can be reduced.

In addition, there is no nodes sequence cycle in the
PPLattice. We can prove such property in the following:
Without loss of the generality, suppose that there are links
(n1, n2), (n2, n3), (n3, n1) in PPLattice, we know that the
path for n1 is more restrictive than that for n3 and the path
for n3 is more restrictive than that for n1. In this way, n1
and n3 are equivalent. However, the nodes in PPLattice
are different.

There are three main operations on the PPLattice,
including the construction of the PPLattice, the pruning
of the PPLattice based on view ID, the location of nodes
with path more restrictive than a given single XPath.

The PPLattice is constructed from the predicate sub
trees for each view in the views set. The PPLattice is set
empty initially. Given single XPaths set N for the
predicate sub tree, we insert single XPath into the
existing PPLattice. We set the current top layer T as the
top nodes set. For a node t constrcuted from the single
XPath in N, we detect the relationship between node t and
node p in T. If there is no containment relationship
between p and t, we just remove p from the nodes set T. If
t is more restrictive than that of p, we build edge between
the p to t directly. In other case, we check the
restrictiveness between children nodes of p and t. If there
is one child node pc of p with more strong restrictiveness
than that of t, we remove node p from top set T, and we
add child node pc into T. We apply the above rules untile
there is no changes of the Top set T. The final nodes set T
denotes the direct parent nodes set for node t.

We handle the lower layer nodes set B similarly. The
final nodes set B represents the direct nodes set for node t.

In this way, the node t can be inserted into the PPLattice
and the link between each node in T or B to node t is
established.

We also need to prune the PPLattice since only part of
the views are involved in the candidate query rewriting
plan while PPLattice is constructed from all XML views.
For each XPath view v in the view set, we locate the node
n for the single path in v in the PPLattice and annotate
node n ‘Usefull’. We remove the nodes without annotation
and reconstruct the link based on the original relationship
between nodes.

With the pruned PPLattice, we try to locate the node
with the more restrictive single path than the given single
path p in query. We set the current top nodes T as the top
nodes set, and determine the restrictiveness of the each
node t of T and single path p. If there is no containment
relationship between t and p, we just remove t from T. If
the path for p is more restrictive the path for node t, we
remove t from T and need not consider any child or
descendant node of n in the following. If the path for t is
more restrictive than that of p, we add all children nodes
of t into T and apply the rules on T iteratively. T contains
the nodes with path more restrictive than path p finally.

4. The Query Rewriting Plan Generation Based
on MPTree and PPLattice
With the MPTree and PPLattice, we try to build the

query rewriting plan efficiently. The whole process can be
illustrated in the following figure.

Given one XPath, we generate the related tree pattern.
We decompose the tree pattern into the main path pm and
a set of predicate single path pp. we check the candidate
views set Vpmi on MPTree for pm, and generate the query
rewriting plans over the multiple views.

We obtain the candidate views ID from Vpmi. We
reconstruct the PPLattice based on the views ID. The
following operation will be operated on the newly built
PPLattice. We locate the nodes with the more restrictive
path than satisfied single path node which is more
restrictiveness than pp. We obtain the views set for each
pp and make the interaction among them. The view in the
intersection results passes the validation with the MPTree
and PPLattice.

We need to provide the sound query containment test
method to validate the candidate query rewriting plan
which has meet the requirement of MPTree and PPLattice.
The containment operation can be implemented with the
following containment operation.

MPTree

PPLattice

Candidate Views Generation

XPath Query

PPLattice Pruning Based on
Views ID

Candidate
view ID

Locate the Satisfied Single
Path

Pruned
PPLattice

Decomposition into
single predicate path

Intersection views for all
paths

Satisfied
Views Id

Establish the Containment
Mapping from View to query

Candidate
Views

Containment
Mapping

Fig. 6: The XPath Query Rewriting Plan Based on
MPTree and PPLattice.

Definition 8: (The containment of the tree pattern)
Given an outer predicate sub tree Tq=(Vq,Eq,rq) and an
outer predicate sub tree Tv=(Vv,Ev,rv), we construct the
tree pattern P=(Vp,Ep,rp) by the following rules:

1) The nodes in the P are initialized with the nodes
set in the form of [nq1,nv1], where nv1 is the leaf
node nv1 in XPath view, node nq1 is the node with
the same element as that of the or the wildcards.

2) The node [nq2, nv2] is added into Vp where nq2∈
Vq and nv2∈Vv, for each node [nq3, nv3], if the
single path from nq2 to nq3 in Tq is less restrictive
than the single path from nv2 to nv4 in Tv. As for
the node nq2, we called that nq2 find the mapped
node in Tv.

3) If all the branching nodes Tq find the mapped
node in Tv, and there is one node [nq1, nv1] where
nq1=rq and nv1=rv, the containment between Tq
and Tv returns TRUE, else returns FALSE.

dess

des

dataset

title

[q1,q7]

[q2,q8] [q3,q9]

[q5,q11] [q6,q12]

abs

Fig. 7: The illustration of the Containment Mapping
Basically, the result tree of containment operator

encodes the containment relationship between the XPath
view to the XPath query in the newly created node.
Taking the outer predicate sub tree for q1 and v1 in Fig.1

as example, the initial nodes of the containment operation
result pattern contains {[q5, q11], [q6, q12]} in Fig.8 since
both q5 and q11 are labeled with element abs, both q6 and
q12 are annotated with the element des. We know that [q3,
q9] will be new nodes in TR considering the requirement.
We take the similar rules until we find that one node [q1,
q7] will be new state in TR. The mapping from query q1 to
view v1 is encoded in the newly generated node.

5. Related Work
The former related work includes view-based querying

on the relational model, view-based query answering on
the semi-structured data, cache management in the XML
query process, and XPath optimization with schema.

Answering query using views has been extensively
studied on the relational model [6,7,8]. Two fundamental
algorithms on relational data, bucket and inverse rule
algorithms, have been proposed in [6,7]. It is not a trivial
work to extend the result on the relational model to the
nested data model due to the semantic mismatch among
two models and different expressive power of two query
languages.

Some attempts have been made on the semi-structured
data model or the graph data model. The method supports
[11] the nested query expression and the results
reconstruction, however, it does not support features
similar to "//" or "*" in the XPath. Regular path query
rewriting discussed in [4] on graph model supports the
regular expressions. However, it does not handle the
result reconstruction.

XPath rewriting at server side is studied in [1], which
handles the XPath rewriting over XPath views if we
regard the XML index as a special case of XML view. It
extends the query containment test [11] and proposes an
incomplete but efficient XPath{//,/,[],*,|} rewriting
algorithm. However, this work does not take the multiple
XML views into account. XPath rewriting at client side is
studied in [2]. It provides the polynomial method to
handle the XPath query rewriting when the features of the
XPath are limited. The XML views selection from the
multiple XML queries is studied in [3].

6. Conclusion and Future Work
In this paper, we proposed MPTree and PPLattice to

manage the multiple XML views, and develop related
algorithm to generate the query rewriting plans
efficiently.

Reference
[1] A. Balmin, F. Ozcan, K. Beyer, R. Cochrane, H.

Pirahesh: A Framework for Using Materialized
XPath Views in XML Query Processing. In Proc of

VLDB 2004. pp60-71.
[2] W.H.Xu, Z. M.Özsoyoglu. Rewriting XPath Queries

Using Materialized Views. In Proc. of VLDB 2005,
pp 121-132.

[3] S. Boag, D. Chamberlin, M. F. Fernandez, D.
Florescu, J. Robie, and J. Simeon. XQuery 1.0: An
XML Query Language. (Working Draft). Available at
http://www.w3c.org/TR/xquery.

[4] D. Calvanese, G.D.Giacomo, M. Lenzerini, M. Vardi.
Rewriting of regular expressions and regular path
queries. In Proc of POD 1999, pp 194-204.

[5] J. Clark. XML Path language(XPath), 1999.
Available at the W3C, http://www.w3.org/TR/XPath.

[6] M.R.Genesereth, A.M. Keller, Oliver M. Duschka:
Infomaster: An Information Integration System. In
Proc of SIGMOD 1997, pp 539-542.

[7] G.Grahne, A.O.Mendelzon. Tableau techniques for
querying information sources through global
schemas. In Proc of ICDE 1999, pp 32-347.

[8] A.Halevy: Answering queries using views: A survey.
In VLDB Journal. 10, 4 (2001), pp270-294.

[9] G.Miklau, D.suciu. Containment and equivalence for
an XPath fragment. In Proc of PODS 2002, pp 65-76.

[10] F.Neven, T.Schwentick: XPath Containment in the
Presence of Disjunction, DTDs, and Variables. In
Proc of ICDT 2003, pp 315-329.

[11] Y.Papakonstantinou, V.Vassalos. Query rewriting for
semi-structured data. In Proc of SIGMOD 1999, pp
455-466.

[12]NASA data set. Available at
http://www.cs.washington.edu/
research/xmldatasets/www/repository.html#nasa.

