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Abstract XML query rewriting in the distributed computing environment receives high attention recently. Different from 

existing work, we focus on the query rewriting in the cases that there are multiple views at the client side. We design two data 
structures to manage the multiple XML views. MPTree is constructed from the main path of the XML views to generate the 
candidate query rewriting plan. PPLattice is constructed from the predicate sub trees of the XPath views to validate the 
candidate query rewriting plan. Based on MPtree and PPLattice, the query rewriting plans search space over multiple views is 
pruned significantly and the high cost of the query containment can be reduced.  
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1. Introduction 

With XML becoming the information representation 
and exchange standard in the Internet, XML is used in the 
distributed computing environment increasingly. Due to 
the high cost of the network transfer and the complexity 
of the XML query evaluation, the cached XML views at 
the client side play important roles in the query 
optimization. When a user submits a query to the remote 
server, system attempts to answer the query using the 
views at the client side directly[2]. In this way, the 
response time in the distributed computing environment 
can be reduced significantly. 

The query rewriting problem has been studied 
extensively in the relational database context. Due to the 
complex features supported, the XML query rewriting 
faces more challenge than the relational query. The 
current study [9,10] shows that the XML query 
containment – one of the important steps in the XML 
query rewriting - is Co-NP problem even when XPath 
supports the limited features including {//,/,*,[]}.  

Many methods are proposed to handle the XML query 
rewriting over the XML view. The query rewriting 
generation at the server side are studied [1] to generate 
the sound but incomplete plan over XPath {//,/,|,*,[]} in a 
polynomial time if the index can be regarded as the 
special case of the XML materialized view. The XPath 
query rewriting problem at the client side [2] is studied to 
show the special cases of XPath with restrictive features 
when the query rewriting plan is sound and correct.  

Due to the different frequent query patterns, there may 
be multiple XML views cached in the client side. The 
XPath views selection problem has been discussed [3] 
over hundreds of views. Although the method proposed in 
[2] can be extended to support multiple views via 

combining the query rewriting results over each view with 
UNION operation, the whole process surfers the 
performance problem. Each view has to be handled to 
generate the candidate plan separately. In addition, the 
time consuming rewriting plan validation process has to 
be implemented for each view. We use the following 
example to demonstrate the challenges in the query 
rewriting over the multiple views.  

Example 1: Given a NASA XML database [12] and a 
query that looks for the partNumber(part) of a 
dataset(data) in which the abstract(abs) is available in at 
least one descriptions(dess) that has nested 
description(des) is writing in XPath:  

q1:/data[dess [./abs][./des]/title/part; 
Assuming the following three materialized views are 

defined over the database:  
v1: /data [dess[./abs/para][./des][detail]/title [foot];  
v2: /*[dess [./abs/para][.//des]]/title[foot]; 
v3: /data [//dess[./abs/para][./des][detail]/title [foot]; 
Notice that the XML views may share the same sub 

paths. For example, v2 and v3 share the same sub part 
/data/title/foot. In the case that the same sub path appears 
in the main path, there are may be redundant cost in the 
query rewriting plan generation. In the case that the same 
sub path appears in the predicate sub tree, there are may 
be redundant cost in the query rewriting plans validation. 

In order to prune the query rewriting plans space over 
the multiple XML views and improve the efficiency of the 
query rewriting plan generation, we propose a framework 
to organize the multiple XML views in a more 
manageable way. More specifically, our contributions can 
be summarized as follows: 

 We propose MPTree to manage the main paths of 
the different XML views. Based on MPTree, we 



 

 

generate the query rewriting candidate plan 
efficiently and reduce the redundant computation 
among them.  

 We propose PPLattice to organize the predicate 
sub trees from each XML views. Each node in 
PPLattice represents single path from the root 
node to the leaf node in the predicate sub tree. 
The edge in the PPLattice represents the 
containment relationship between the single paths 
which is pre-computed. Based on the PPLattice, 
we can locate more restrictive single XPaths for 
the XPath query in the XML views.  

 After the pruning strategies over the MPTree and 
PPLattice, we propose a sound method to validate 
the query rewriting plans as a whole. Compared 
with the existing methods, only the views passing 
the requirement of the MPTree and PPLattice will 
be considered in the whole tree validation. 

The rest of the paper is organized as follows: we 
introduces the background knowledge and define the 
problem in section 2; we propose MPTree and PPLattice 
in section 3; we discuss the whole process to generate the 
rewriting plan over the multiple views based on MPTree 
and PPLattice in section 4; related work is discussed in 
section 5; the paper is summarized and the future work is 
discussed in section 6. 

2. Background Knowledge and Problem 
Definition 

2.1. XPath  
XPath is a basic mechanism to select nodes in the XML 

tree. It can be represented by the XPath tree pattern [9], 
which can be defined as: 

Definition 1: (XPath tree pattern). the XPath tree 
pattern can be represented by a query pattern Q=(N,E,r), 
where N represents the set of element nodes, E represents 
the relationship between the elements in N, for each e∈E, 
type(e)=AD (short for ancestor/descendant) or PC (short 
for parent/child);  r denotes the root node of the tree; 
Suppose L denote to the leaf nodes of the tree, given an 
element n∈L, n is called return node if n is the root 
element of the query result; the path from the root node to 
the return node is called the main path; The path from the 
root node to any leaf node is called the single XPath 
query. 

The following are the tree patterns of the query q1  and 
view v1, v2, v3 in Example 1.  
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Fig. 1: XPath Tree Pattern for q1, v1, v2, v3  

Definition 2: (The restrictiveness of XPath) Given two 
XPath p1 and p2, if we build the nodes mapping M from 
the XPath tree p1 to the XPath tree p2, for each sub path 
p11 from n11 to n12 in p1, the mapped sub path M(p11) from 
M(n11) to M(n12) in p2, M(p11) is contained in p11, we call 
p2 is more restrictive than p1. 

Given XPath p1 and p1, the restrictiveness comes from 
two aspects. In one case, the length p2 is much longer 
than that of p1. In another case, the path set P for p2 is a 
sub set of those of the p1. In both cases, we can establish 
the containment mapping from p1 to p2. We also notice 
that the containment is transitive. That is, if p1 is more 
restrictive than p2, and p2 is more restrictive than p3, p1 is 
more restrictive than p3. 

2.2. View-based Query Answering 
The problem of answering queries using the data in the 

existing materialized views has been extensively studied 
for the past decade. The related problems can be formally 
defined as follows [8]:  

Definition 3: (Query rewriting plan). Given a query q 
over a database D, and a set of view V={v1,…vn} over the 
same database D, find a query q1 which can be evaluated 
on the view set V, where q1(V)⊆q(D), q1(V) denotes that 
the results of query q1 evaluated on the view set V; q(D) 
denotes that the results of q evaluated on the data D; 

Two notations, query containment and query equivalent, 



 

 

are used to validate the query rewriting plan. 
Definition 4: (Query Containment and Equivalence). A 

query q1 is said to be contained in a query q2, denoted by 
q1⊆q2, if for any database D, the results computed from q1 
are a subset of those computed for q2, i.e., q1(D)⊆q2(D). 
A query q1 is said to be equivalence of a query q2, if for 
any database D, q1(D)⊆q2(D) and q1(D)⊇q2(D). 

Definition 5: (XML containment mapping). Given a 
XPath query tree pattern q, a XPath view tree pattern v, 
view is more restrictive than the query if we can establish 
the mapping from the query to the view, where the sub 
path p1 in the view is more restrictive than M(p1) in 
query. 

From the above definition, we notice that for each 
single XPath in the query, we can find at least one more 
restrictive single XPath in the view. Such requirement can 
be used as one of the heuristic information in the query 
rewriting. That is, if we can not find a more restrictive 
single XPath in the view v for the XPath query q, the 
view v can not be used to answer the query q without 
further validation. 

2.3. The Problem Definition 
With the above definitions, the problem in this paper 

can be defined as follow:  
Given an XML Database T, XML structure schema D, a 

set of pre-defined materialized views V over the schema D, 
and an XPath{[],//,*,/} query Q, , how to generate valid 
query rewriting plan answering plan for views set V 
efficiently? 

3. Query Rewriting over the Multiple Views 
3.1. System Infrastructure 

Recall the basic process to generate the query rewriting 
plan over the single XML view first. Given one XPath 
view and one XPath query, we try to match the main path 
of the query against the main path of the view. If matched, 
we generate the candidate query rewriting plan, which can 
be further validated with the consideration of the 
predicate sub-tree. 

The following figure illustrates the mapping of the 
landmark nodes from the XPath query tree pattern to the 
XPath view tree pattern. One node n in the main path of 
the XPath called the separate node divides the main path 
into a prefix path and a suffix path. The prefix path is less 
restrictive than the main path of the XML view. 
Accordingly, the branching predicate associated with the 
original XPath expression is divided into two sets: the 
outer predicates – the predicates on the nodes in the 
prefix path, including the separate node; and the inner 

predicates – the predicates on the nodes in the suffix path. 
The sub-tree rooted at the separate node is called the 
inner predicate sub-tree. Outer predicate sub-tree is the 
query pattern tree subtracts the inner predicate sub-tree. 
The outer predicate sub tree in query is less restrictive 
than that of the XML view. 
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Fig. 2:  Mapping from the query definition to view 
Due to the different roles of the single XPath in the 

main path and the predicate sub tree, we build two XML 
view management auxiliary structures: MPTree and 
PPLattice to organize the XML in a more manageable way. 
MPTree is constructed from the main path of the XML 
views set to generate the query rewriting candidate plans. 
PPLattice is constructed from the predicates sub tree to 
validate the query rewriting candidate plan. Both MPTree 
and PPLattice can reduce the search space in the query 
rewriting plans over the multiple views. The framework 
of our method can be illustrated in the following figures: 
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Fig. 3: the framework of our method. 

From Fig.3, we generate the candidate query rewriting 
plans from the MPTree which is constructed from the 
main path of the XML view for a given XPath query. We 
validate the candidate query rewriting plans with the 
PPLattice at the first stage. If the candidate plans pass the 
validation at the first stage with the PPLattice, we 
validate the query rewriting plan as a whole tree at the 
next stage and generate the final query rewriting plan.  



 

 

3.2. MPTree 
MPTree contains the information of main paths from all 

existing views. Intuitionally, MPTree can be generated via 
the merging the main path of all XPath views in a top 
down fashion. 

Definition 6: The MPTree T=(V,E,r) can be constructed 
from XPaths set P={p1,..pn}. For each node n in XPath 
p i∈{p1,..pn}, if there is one node n1 in XPath p j∈{p1,..pn} 
i≠j, the path from the root node in p i to node n is the same 
as the path from the root node in p j to node n1, we merge 
n1 and n together. r is the root node of any XPath p. We 
also annotate the return node of XPath p i  with the related 
id i.  
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Fig. 4: the sample of MPTree 
From Fig.4, we notice that sub path /data is shared by 

v1 and v3. If we generate the query rewriting plan against 
the XML views on MPTree, the sub path /data can be 
considered only once. 

Two main operations are related with the MPTree. The 
first one is the construction of MPTree. This operation 
can be implemented in the same way as the definition of 
MPTree, which can be implemented in linear time in the 
size of the nodes of the main path of the XPath views. 
The second one is to generate the candidate view 
rewriting plan from the MPTree. The operation can be 
handled in the following way: 

Given an XPath query q with the single XPath tree 
Tq=(Vq,Eq,rq) and the MPTree MT=(Vv,Ev,rv) which is 
constructed from the main paths of all views, we 
construct the composite tree R=(Vp,Ep,rp) over MT and Tq 
by the following rules: (1) the root node rp of R can be 
initialized as the rp=[rq,rv]. (2) Given the node 
n1=[nq1,nv1]∈Vp, (nq1, nq2)∈Eq, (nv1, nv2)∈Ev,  

 Type(nq1,nq 2)= "PC" Type(nq1,nq 2)= "AD" 

Type(nv1, 
nv2)= "PC" 

n2=[nq2,nv2] is created 
with type(n1,n2)="PC" 
if the element of nq2  
and nv2 are the same 

n2=[nq2,nv1] is created 
with the type 
(n1,n2)="PC" and n3 = 
[nq 2,nv2] is created 
with the 
type(n1,n3)="AD" if 
the element of nq 2 and 

nv2 are the same, 

Type(nv1, 
nv2)= "AD"

 n2=[nq2,nv1] is 
created with the type 
(n1,n2)="PC" and n3 = 
[nq 2,nv2] is created 
with the 
type(n1,n3)="AD" if 
the element of nq 2 and 
nv2 are the same, 

Table 1: the Composition Rules 

For each main paths of XML view v in the MPTree, we 
check whether there is one node (n1, n2) in the composite 
tree R, where n2 is the return node for v, we know that n1 
is a separate node in query main path q for v. In other 
words, the suffix path with separate node n1 in q can be 
used as the query q rewriting plan for view v. From the 
composition rules, we know that the suffix path in the 
query is less restrictive that the main path of the view.  

3.3. The PPLattice 
We further check the validation of the candidate query 

rewriting plan by establishing the containment mapping 
from the query outer predicate tree to the view outer 
predicate tree. From the property of the containment 
mapping, we can find a mapped single XPath in the view 
for each single XPath in the query if one valid mapping 
exists for the whole tree pattern. In other words, if we can 
not find a mapped single XPath for the query tree, the 
view will not be contained in query. In order to speed up 
the validation of the candidate query rewriting plan and 
reduce the cost of the validation test for the whole tree, 
we can detect the restrictiveness between the single XPath 
in XPath view and single XPath in XPath query at the 
first stage. If it is not satisfied, the view will not be 
considered further in the following step. 

The mapping from the single path p1 in the query to the 
single path p2 to the view indicates that p1 is more 
restrictive than p2. From the existing study [9], the 
containment test can be implemented in a polynomial time 
when the single XPath support {//,/,*}. We can exploit 
such a feature to speed up the query containment for the 
single XPath.  

In order to detect whether there are single XPaths in 
XPath views more restrictive than single XPaths in XPath 
query efficiently, we propose the structure of PPLattice: 

Definition 7: PPLattice G=(V,E,T,B) can be constructed 
from XPaths set P={p1,..pn}. Each node n∈V represents 
the different single XPath p in each XPath in P. The 
single XPath expression n[S]∈S is annotated on the node n.  
For node n1∈V and node n2∈V, if there is no node n3∈V, 
where n1 is more restrictive than n2, n1 is more restrictive 



 

 

than n3, n3 is more restrictive than n2, we build an edge 
e∈E from node n2 to n1. The top nodes set T include the 
nodes without the parent node. The bottom nodes set B 
includes the nodes without the child nodes. 

/data/dess/detail /data/dess/des/data/dess/abs/para

/*/dess//des/data/dess/abs
/data//dess/

des
/data//dess/detail

/data//dess/abs/
para

Fig. 5: the sample of the PPLattice 
As for a node n in PPLattice, there maybe several 

parent nodes. Therefore, the PPLattice does not take the 
form of tree structure. In addition, we notice that there is 
no nodes sequence (n1, n2), (n2, n3), (n1, n3) in PPLattice. 
Since we can infer that the path for n3 is more restrictive 
than that of n1 from other links transitivity, we need not 
construct link from n1 to n3. Therefore, the edge in 
PPLattice can be reduced.  

In addition, there is no nodes sequence cycle in the 
PPLattice. We can prove such property in the following: 
Without loss of the generality, suppose that there are links 
(n1, n2), (n2, n3), (n3, n1) in PPLattice, we know that the 
path for n1 is more restrictive than that for n3 and the path 
for n3 is more restrictive than that for n1. In this way, n1 
and n3 are equivalent. However, the nodes in PPLattice 
are different.  

There are three main operations on the PPLattice, 
including the construction of the PPLattice, the pruning 
of the PPLattice based on view ID, the location of nodes 
with path more restrictive than a given single XPath. 

The PPLattice is constructed from the predicate sub 
trees for each view in the views set. The PPLattice is set 
empty initially. Given single XPaths set N for the 
predicate sub tree, we insert single XPath into the 
existing PPLattice. We set the current top layer T as the 
top nodes set. For a node t constrcuted from the single 
XPath in N, we detect the relationship between node t and 
node p in T. If there is no containment relationship 
between p and t, we just remove p from the nodes set T. If 
t is more restrictive than that of p, we build edge between 
the p to t directly. In other case, we check the 
restrictiveness between children nodes of p and t. If there 
is one child node pc of p with more strong restrictiveness 
than that of t, we remove node p from top set T, and we 
add child node pc into T. We apply the above rules untile 
there is no changes of the Top set T. The final nodes set T 
denotes the direct parent nodes set for node t. 

We handle the lower layer nodes set B similarly. The 
final nodes set B represents the direct nodes set for node t. 

In this way, the node t can be inserted into the PPLattice 
and the link between each node in T or B to node t is 
established.   

We also need to prune the PPLattice since only part of 
the views are involved in the candidate query rewriting 
plan while PPLattice is constructed from all XML views. 
For each XPath view v in the view set, we locate the node 
n for the single path in v in the PPLattice and annotate 
node n ‘Usefull’. We remove the nodes without annotation 
and reconstruct the link based on the original relationship 
between nodes. 

With the pruned PPLattice, we try to locate the node 
with the more restrictive single path than the given single 
path p in query. We set the current top nodes T as the top 
nodes set, and determine the restrictiveness of the each 
node t of T and single path p. If there is no containment 
relationship between t and p, we just remove t from T. If 
the path for p is more restrictive the path for node t, we 
remove t from T and need not consider any child or 
descendant node of n in the following. If the path for t is 
more restrictive than that of p, we add all children nodes 
of t into T and apply the rules on T iteratively. T contains 
the nodes with path more restrictive than path p finally.  

4. The Query Rewriting Plan Generation Based 
on MPTree and PPLattice 
With the MPTree and PPLattice, we try to build the 

query rewriting plan efficiently. The whole process can be 
illustrated in the following figure. 

Given one XPath, we generate the related tree pattern. 
We decompose the tree pattern into the main path pm and 
a set of predicate single path pp. we check the candidate 
views set Vpmi on MPTree for pm, and generate the query 
rewriting plans over the multiple views.  

We obtain the candidate views ID from Vpmi. We 
reconstruct the PPLattice based on the views ID. The 
following operation will be operated on the newly built 
PPLattice. We locate the nodes with the more restrictive 
path than satisfied single path node which is more 
restrictiveness than pp. We obtain the views set for each 
pp and make the interaction among them. The view in the 
intersection results passes the validation with the MPTree 
and PPLattice. 

We need to provide the sound query containment test 
method to validate the candidate query rewriting plan 
which has meet the requirement of MPTree and PPLattice. 
The containment operation can be implemented with the 
following containment operation. 
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Fig. 6: The XPath Query Rewriting Plan Based on 
MPTree and PPLattice. 

Definition 8: (The containment of the tree pattern) 
Given an outer predicate sub tree Tq=(Vq,Eq,rq) and an 
outer predicate sub tree Tv=(Vv,Ev,rv), we construct the 
tree pattern P=(Vp,Ep,rp) by the following rules:  

1) The nodes in the P are initialized with the nodes 
set in the form of [nq1,nv1], where nv1 is the leaf 
node nv1 in XPath view, node nq1 is the node with 
the same element as that of the or the wildcards. 

2) The node [nq2, nv2] is added into Vp where nq2∈ 
Vq and nv2∈Vv, for each node [nq3, nv3], if the 
single path from nq2 to nq3 in Tq is less restrictive 
than the single path from nv2 to nv4 in Tv. As for 
the node nq2, we called that nq2 find the mapped 
node in Tv.    

3) If all the branching nodes Tq find the mapped 
node in Tv, and there is one node [nq1, nv1] where 
nq1=rq and nv1=rv, the containment between Tq 
and Tv returns TRUE, else returns FALSE. 
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Fig. 7: The illustration of the Containment Mapping 
Basically, the result tree of containment operator 

encodes the containment relationship between the XPath 
view to the XPath query in the newly created node. 
Taking the outer predicate sub tree for q1 and v1 in Fig.1 

as example, the initial nodes of the containment operation 
result pattern contains {[q5, q11], [q6, q12]} in Fig.8 since 
both q5 and q11 are labeled with element abs, both q6 and 
q12 are annotated with the element des. We know that [q3, 
q9] will be new nodes in TR considering the requirement. 
We take the similar rules until we find that one node [q1, 
q7] will be new state in TR. The mapping from query q1 to 
view v1 is encoded in the newly generated node. 

5. Related Work 
The former related work includes view-based querying 

on the relational model, view-based query answering on 
the semi-structured data, cache management in the XML 
query process, and XPath optimization with schema. 

Answering query using views has been extensively 
studied on the relational model [6,7,8]. Two fundamental 
algorithms on relational data, bucket and inverse rule 
algorithms, have been proposed in [6,7]. It is not a trivial 
work to extend the result on the relational model to the 
nested data model due to the semantic mismatch among 
two models and different expressive power of two query 
languages. 

Some attempts have been made on the semi-structured 
data model or the graph data model. The method supports 
[11] the nested query expression and the results 
reconstruction, however, it does not support features 
similar to "//" or "*" in the XPath. Regular path query 
rewriting discussed in [4] on graph model supports the 
regular expressions. However, it does not handle the 
result reconstruction.  

XPath rewriting at server side is studied in [1], which 
handles the XPath rewriting over XPath views if we 
regard the XML index as a special case of XML view. It 
extends the query containment test [11] and proposes an 
incomplete but efficient XPath{//,/,[],*,|} rewriting 
algorithm. However, this work does not take the multiple 
XML views into account. XPath rewriting at client side is 
studied in [2]. It provides the polynomial method to 
handle the XPath query rewriting when the features of the 
XPath are limited. The XML views selection from the 
multiple XML queries is studied in [3]. 

6. Conclusion and Future Work 
In this paper, we proposed MPTree and PPLattice to 

manage the multiple XML views, and develop related 
algorithm to generate the query rewriting plans 
efficiently. 
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