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Abstract XML databases involving sensitive information introduce a new challenge specific to scalable and efficient access 

control for data protection. However, related approaches have suffered from scalability problems because they tend to work on 

individual documents. In this paper, we propose a novel approach to XML access control through Java-based rule functions. A 

rule function is an executable code fragment that encapsulates the access control rules of a specific user or group, and is shared 

by all documents of the same document type. At runtime, the rule functions corresponding to the access request are loaded to 

the main memory and executed to determine the accessibility of document fragments. Moreover, this approach enables an 

efficient real-time update when the rules are updated. Using synthetic and real data, we show the scalability of the scheme by 

comparing the accessibility evaluation cost. 
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1. Introduction 

The Extensible Markup Language [6] is widely used for 

data presentation, integration, and management because of its 

rich data structure. In applications such as business transactions 

and medical records, sensitive data may be scattered 

throughout an XML document and access control on 

node-level (element or attribute) is required to ensure that 

sensitive data can only be accessed by authorized users. Access 

control must be expressive and be able to support rules that 

select data based on the location and value(s) of data. In 

practical applications, such as electronic libraries, and credit 

card companies, the number of access control rules is on the 

order of millions, which is a product of the number of 

document types (in 1000's) and the number of user roles (in 

100's). It is obvious that such applications call for high 

scalability and performance from the underlying access control 

system. 

Ideas to efficiently perform expressive access control have 

been proposed in [2, 7, 10]. They are effective in searching for 

access controlled nodes [2, 10], or eliminating unnecessary 

accessibility checks at runtime [7]. These research efforts have 

managed to improve the efficiency of expressive access 

control; however, since they generally focus on document-level 

optimizations basis on the access control rules, rule updates 

may incur unacceptable costs. In our previous research [26], a 

rule-based matching tree is constructed to achieve high 

expressiveness which managed to handle 760,000 rules. And in 

another previous research work [27], the rule number is 

extended to 2,000,000 which obviously improves scalability. 

The two previous approaches also share the point that they 

both focus on uni-subject case in which each user is specified 

to one subject. However, in many real applications, a user may 

belong to multiple groups or domains that involve more 

complicated and costing decision making for the multi-subject 

environment. For example, when Alice is an employee and a 

manager at the same time, both rules for the employee group 

and the manager groups should be used to decide whether 

Alice can access the department information. 

In this paper, we extend the access control model introduced 

in [27] and present an access control system with highlight on 

multi-subject decision making. The novelty of this access 

control model is the high scalability and the high performance. 

The key idea is to encode the access control rules of each 

subject as a rule function, and then further group the rule 

functions to Java classes on the basis of the relationship 

between subjects. Only the corresponded class is required to 

reside in the memory and the rule function(s) are executed for 

actual access evaluation. In addition, the related rule function is 

executed only once for accessibility decision of the subject. As 

far as we know, our Java-based approach is the first one that is 

capable of supporting millions of access control rules 

efficiently. 

The rest of this paper is organized as follows. After 

reviewing some preliminaries in Section 2, we introduce our 

Java-based access control model in Section 3. Section 4 

describes how to generate rule functions from the access 

control policy. In Section 5, the limitations and optimization of 

rule function grouping are introduced. Runtime access control 

enforcement is introduced in Section 6, and experimental 

results are reported in Section 7. In Section 8 we summarize 

our conclusions and future work. 

1.1 Related Work 

Many approaches for enforcing XML access control have 

been proposed. Some of them [14, 20] support full XPath [8] 

expressions to provide expressiveness by creating the 

projection of the policy on a DOM [16] tree. However, these 

approaches incur massive costs when handling a large policy 

or a deeply layered XML document. The mechanisms 

proposed in [1, 3, 9, 10] perform more efficiently but also 

encounter the same problem since the node-level access 

control on a DOM-based view can be expensive when 

processing large numbers of XML documents. 



 

 

To overcome this problem, several efficient access control 

models have been proposed [22, 25]. Qi et al. [25], our 

previous research, presents a method performing in 

near-constant time regardless of the number of rules. This is 

achieved by using an access condition table which is generated 

from the access control rules independent of the XML data. 

However, this approach places limitations on the XPath 

expression, and does not provide an efficient runtime 

evaluation mechanism for value-based conditions. We also 

proposed a policy matching tree in [26] to achieve 

expressiveness and scalability. Though this approach can 

handle almost 760,000 rules, we developed another approach  

[27] supporting 2,000,000 rules by converting the policy to a 

group of rule functions in Java. Related Java classes are 

compiled before runtime, then loaded to the main memory as 

necessary and executed for the accessibility decision of a 

subject. However, the approach does not support access control 

enforcement when multiple subjects are involved for an 

accessibility decision. 

Murata et al. [22] optimizes pre-processing steps by 

minimizing the number of runtime checks for determining the 

accessibility of nodes in a query with automata. However, the 

mechanism is limited to XQuery [5] and cannot handle other 

query languages and primitive APIs such as DOM.  

A different approach with document-level optimizations is 

also proposed by Yu et al. [28]. Their scheme enforces efficient 

access control with an accessibility map which is generated by 

compressing neighboring accessibility rules to improve cost 

efficiency. However, since the maps are generated on a 

document-level, document updates or policy updates may 

trigger expensive re-computations especially for a large XML 

database. 

Optimizations are also done in a number of research efforts 

on XML query languages (e.g., XPath and XQuery). The 

methods include query optimization based on (i) the tree 

pattern of queries [7, 11, 24], (ii) XML data and XML schema 

[13, 18, 19, 21]; and (iii) the consistency between integrity 

constraints and schemas [12]. However, these perform efficient 

data selection usually on document-level and require indices. 

Therefore, in a large XML database, for instance, a database 

with 10,000 document collections and 10,000 documents for 

each document collection, such optimization mechanisms may 

consume a prohibitive amount of space. Moreover, these 

technologies are designed for XQuery and they cannot handle 

other query languages and primitive APIs such as DOM. 

 

2. Access Control Policy 

Various access control policy models have been proposed. 

We use the one proposed by Murata et al. [22] in which an 

access control policy contains a set of 3-tuple rules with the 

syntax
1
: <Subject, Permission Action, Object>.  

The subject has a prefix indicating the type such as uid, role, 

and group. Permission ‘+’ stands for a grant rule while ‘-’ 

means denial. The action value can be either read (r or R), 

update, create, or delete. Due to lack of space, we focus on read 

in this paper, as the others can be implemented with the same 

                                                                            

1
 The policy syntax can be represented in XACML [23]. In 

this paper, we use the above syntax for simplicity. 

mechanism. The rule with +R or –R propagates read 

permissions (grant or denial) downward to the entire sub-tree, 

while +r grants a permission on the selected node only. As an 

example, (uid:Alice, +r, /a) specifies that user Alice is allowed 

to access /a but access to /a/b is implicitly specified since grant 

is not propagated down to the descendants of /a. Moreover, 

according to the denial downward consistency principle [22] 

which stipulates that the descendants of an inaccessible node 

are also inaccessible, accessibility dependence exists between 

ancestors and descendants. Therefore, it is obvious that –r and 

–R are equivalent, and thus we specify denial rules only with 

–R in this paper. In addition, in order to maximize data security, 

we (i) resolve access conflicts with the denial-takes-precedence 

principle [22], and (ii) apply the default action of denying 

permission on paths that have no explicit and implicit access 

control specified. 

3. Scalable Access Control Model 

In this section, we describe a scalable access control model 

that consists of a rule function, a mapping table, evaluation 

results, and an evaluation algorithm. As an extension of the 

previous work, we add a process in which multiple returned 

values of the rule functions are combined to the final 

accessibility result. The process could be defined regarding to 

the application requirements. 

3.1 Rule Functions 

A rule function is the basic fragment in Java that performs 

access control on a specific subject. The rule function receives 

the accessed path and returns an evaluation result to the caller. 

If a user owns multiple subjects, when Alice participating in 

multiple user groups for example, multiple rule functions are 

bound for accessibility evaluation. 

In our previous work [27], two types of rule functions are 

introduced that one is indexed by the object, and the other one 

is indexed by the subject. However, the former model is not 

able to support the multi-subject environment since the 

accessibility decision mechanism may be different regarding to 

the application requirements when multiple subjects involve. 

3.2 Evaluation of Accessibility 

Given a requested path of a request, the rule function returns 

an evaluation result in accordance with both the action 

permission and the propagation property of the appropriate rule. 

There are four types of evaluation results as Table 1 shows. 

Table 1 Evaluation results of a rule function 

Access effect  Evaluation Result 

+r GRANT_ON_NODE 

+R GRANT_ON_SUBTREE 

-R DENY 

Nothing UNDECIDED 

As Table 1 shows, positive authorization is defined by 

GRANT_ON_NODE, and by GRANT_ON_SUBTREE 

which propagates access permissions to the sub-tree. When 

access is denied, the evaluation result of the descendants is also 

DENY due to the denial downward consistency principle. 

UNDECIDED is returned when the accessed path is not 

covered by any rule. Access is denied by default if no further 

access control is specified by other rules. 



 

 

3.3 Mapping Tables 

A mapping table is the key component that connects an 

access request, which contains one or multiple subjects, to the 

appropriate rule functions for accessibility evaluation. We 

define a mapping table which holds subject as key and the 

3-tuple of package name, class name, and function name as its 

value. 

In addition, when handle a large-scaled policy, we can 

construct a hierarchical mapping table to achieve scalability 

that each Java package contains a single mapping table. 

3.4 Evaluation Algorithms 

Based on the defined components (rule functions, evaluation 

results, and mapping tables), our model computes a decision 

result of an access request based on the following algorithms. 

The requirement of our approach is: The access control policy 

must satisfy the consistency that all of the ancestors of a 

descendant specified with grant accessibility should be 

accessible as well. 

Given the path and the subjects of the access request, the 
corresponding entry of each subject is looked up in the 
mapping table. If the corresponding entry exists, the rule 

function with the name found in the table is invoked and 

executed. Since rule functions for multiple subjects may return 

different Boolean results, true or false, for the same request. 

The mechanism to combine all of the returned values for a final 

accessibility result may be different regarding to the application 

requirements. Therefore, we separate the combination 

procedure away from the evaluation mechanism. 

3.5 Result Combination Process 

When a user is bound to multiple subjects, since multiple 

run functions may result in different Boolean results, true or 

false, to combine the results with denial-take-precedence 

principle or grant-take-precedence principle should be decided 

by the application requirements.  

The relationship between the concerned subjects can be 

joined. For example, Alice is both the employee and the 

manager. Therefore, Alice’s access request should be evaluated 

with the rules specified for the employee group and the 

manager group. Since manager usually has the higher privilege 

than employee, if the access to a path is denied by the 

employee group but granted by the manager group, as a final 

accessibility result the access is granted. In this case, 

grant-take-precedence principle is used to combine the results. 

However, denial may override grant in some applications to 

guarantee the maximize security. It is obvious that different 

with other components of this access control model, the result 

combination process is application dependant. 

 

4. Rule Function Generation 

A policy is converted to a group of rule functions. During the 

conversion, both simple paths and paths involving // or 

predicates are coded as rule functions as well. Since various 

rules are specified for the same subject, the execution order of 

the rules in a rule function directly decides the accessibility 

result for the subject with the consideration of the 

denial-take-precedence and the propagation mechanism. As a 

consequence, the rules are converted into the code fragments in 

the order of –R, +R, and then +r. The details of the conversion 

order and the conversion algorithm are introduced in [27]. In 

this section, we briefly present some rule function examples. 

4.1 Policy with Simple Path 

In the rule function model, the access control policy is first 

sorted by subjects. For each subject and subset of rules 

corresponding to that subject, a rule function is produced 

containing code that implements those rules. Inside a rule 

function, the rules are distinguished by the object, and the 

evaluation result is coded as the return value when the accessed 

path satisfies the object condition. As an example, we have a 

rule subset of the access control policy P1 contains  

(1) Rule(Alice, +r, /a)        (2) Rule(Bob, +R, /a).  

Figure 1 shows the rule function for (1) and (2). 

 

 

 

 

 

Figure 1  Example for P1 

4.2 Policy with // 

A path expression containing // selects nodes whose position 

in the data structure is not known precisely and therefore the 

path may map to multiple specific paths. Matching in a rule 

function is performed by regular expressions and the 

java.util.regex package. For instance, the third rule in P1 is (3) 

Rule(Bob, -R, /a//d). The rule function for Bob is generated as 

Figure 2 shows. Note that -R rule is converted first, then 

coming up with +R. 

 

 

 

 

 

 

 

 

Figure 2 Example handing // 

4.3 Policy with Predicates 

An object containing a predicate(s) is first pre-processed by 

separating the predicate(s) pred and the path p, then both pred 

and p are programmed in the rule function for the subject. 

A predicate is a condition comparing XML data or a 

conjunction of such conditions. The comparisons are 

performed through the mathematical operators, =, <>, <, ≤ , >, 

and ≥ . These mathematical operators are translated to Java 

code to enforce predicate evaluation. Since predicate 

evaluation requires XML data stored in the XML database, the 

data referenced in the predicate needs to be retrieved before the 

evaluation. Therefore, an API, retrieveData, is provided to 

retrieve the required data. retrieveData has two parameters: the 

requested node name n, and the path expression p of the node 

1   static Pattern p1 = Pattern.compile("/a/.*/d|/a/.*/d/.*");

2   static public Integer rf_Bob(String path) {

3         Matcher m1 = p1.matcher(path);

4         if (m1.matches())                                  // for (3)

5               return DENY;     

6         else if (path.startsWith(“/a”))                // for (2)

7               return GRANT_ON_SUBTREE; 

8         return UNDECIDED;

9   }

// the rule function for Alice

1   static public Integer sf_Alice(String path) {

2        if (path.equals(“/a”))                         // for (1)

3                 return GRANT_ON_NODE;

4 else return UNDECIDED;

5   }

// the rule function for Bob

6   static public Integer rf_Bob(String path) {

7       if (path.startsWith(“/a”))                   // for (2)

8                return GRANT_ON_SUBTREE; 

9       else return UNDECIDED;

10  }



 

 

imposed by the predicate. Since at runtime the DBMS has the 

position information pos of the requested node, the position of 

n can be found by traversing from pos to p. For example, we 

have a Record document type which contains order details. 

Each order is identified with a unique customer ID, the 

CustKey element. To guarantee that a customer can only see 

their own order details, the access control policy P2 can be 

 

Rule(role:customer, +r, /Orders) 

Rule(role:customer, +R, /Orders/Order[CustKey=$custID]) 

 

In P2, $custID is a system variable which is automatically 

set when a customer logs in. The value of $custID is obtained 

by obtainSystemData which is another API returning the value 

of the system global variables. Assuming that the object 

DataCenter implements both APIs, the Java program fragment 

for handling the predicate evaluation is as shown in Figure 3. 

If the rule contains multiple predicates, the Java code for the 

conjunction of the predicates is encoded. 

 

 

 

 

 

 

Figure 3 Code fragment for predicate CustKey=$custID 

5.  From Rule Functions to Java Classes 

5.1 Size Limitations 

Owing to Java-based implementation, we group rule 

functions to Java classes to gain easy memory management 

provided by the Java Virtual Machine. The simplest way is to 

construct a Java class holding all of the rule functions. 

However, since in the Java Virtual Machine, the total sizes of 

heap and stack cannot exceed 65,536, which means the 

maximum number of rule functions, or subjects, is 65,536, and 

either the method size or the class size cannot exceed 65,536 

bytes at meanwhile. 

We checked 22 types of XML-based applications to see the 

number of paths in XML instances, and then we found the 

number is no more than 300 and most of them are below 100. 

If we specify a rule on each path for each subject, and each rule 

usually costs less than 100 bytes, then we can say that each rule 

function is less than 10,000 bytes. It is clear that in most cases 

we can group the rules sharing the same subject into a single 

rule function without violating the size limitation. 

One more important factor in rule function grouping that 

affects the runtime performance is the file number in a Java 

package. For example, in Windows operation system, time for 

looking up a specific file turns costing when the file number in 

a directory exceeds 1024. As a result, we group at most 1024 

Java classes in each Java package. 

However, the number of the subjects may reach to several 

millions in some cases. For instance, a credit card company 

may prepare access control rules for each client. Therefore, rule 

functions, whose number may reach about millions, should be 

grouped into multiple Java classes. Besides that, the number of 

rule functions in each Java class should be decided also based 

on the rule number for each subject. From the experimental 

results shown in experimental results, we found the memory 

cost is independent of the rule number for each Java class, but 

time for loading from disk to main memory is directly 

influenced by Java class size. 

5.2 Group Optimization 

The multi-subject environment requires multiple rule 

functions to be executed for the accessibility result of an access 

request. To make the number of the classes on memory as few 

as possible, rule functions may be executed for an access 

request should be grouped into the same Java class as much as 

possible. 

Therefore, except the access control policy, we introduce the 

subject specification to the system. In the subject specification, 

the subjects that possibly bound to the same user are list up. For 

instance, {{Sub1, Sub2, Sub5} {Sub1, Sub3, Sub4}} shows 

two subject groups that a user may belong to Sub1, Sub2, and 

Sub5, or Sub1, Sub3, and Sub4. When group rule functions to 

Java classes, the rules functions for Sub1, Sub2, and Sub5 are 

constructed to a Java class while Sub1, Sub3, and Sub4 for 

another. It is clear that the rule function for Sub1appears in two 

Java classes. 

6.  Function-based Access Control System 

6.1 Access control system 

The proposed function-based access control system is 

constructed through Access Control Modeling and Model 

Deployment as Figure 4 shows.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 Function-based access control system 

 

In Access Control Modeling, the access control policy is 

converted to Java classes where each class represents the 

access control rules for a certain number of subjects or objects. 

During this modeling, the corresponding mapping table is 

generated as well. In addition, the Java code fragments are 

compiled into bytecode so that they can be executed. 

Another process, Model Deployment, initially loads the Java 

mapping table into main memory, and then prepares another 

empty system global table, onMemTable, that stores in main 

memory Java object instances that are required to process an 

access request. Since each function group has a unique name, 

onMemTable uses the group name as a key and associates it 

with the corresponding object instance. 

At runtime, given an access request containing subjects and 

a simple path expression, the access control system runs the 

evaluation to get the decision result. The rule function for each 

subject is executed individually by Evaluation Process, and 
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String value0 = DataCenter.retrieveData(“CustKey”, “/Orders/Order”);

String value1 = DataCenter.obtainSystemData(“custID”);

if (value0.equals(value1))

return GRANT_ON_SUBTREE; 

else

return UNDECIDED;

String value0 = DataCenter.retrieveData(“CustKey”, “/Orders/Order”);

String value1 = DataCenter.obtainSystemData(“custID”);

if (value0.equals(value1))

return GRANT_ON_SUBTREE; 

else

return UNDECIDED;



 

 

then the results are combined by Result Combine Process for a 

final accessibility result. If the accessibility result returns 

DENY, the access denied response will be sent back to the user 

without data retrieval from the XML database. Otherwise, the 

output is generated after retrieving the data value from the 

database and returned to the user. Caching can be employed in 

both the access control system and the DBMS to reduce cost of 

the accessibility evaluations. 

This system separates the access control system from the 

database engine so that security-related support is not required 

from the underlying database. This enables any XML DBMS, 

even off-the-shelf products, to provide scalable access control. 

6.2 Policy update 

The Java-based implementation loads the required classes 

into memory and so any updates to the classes residing on disk 

will not automatically change those in memory. But the class 

reload mechanism provided by Java can be utilized when we 

wish to update memory-resident classes. Class reloading 

provides a simple and low-cost solution to supporting policy 

updates.  

When the policy is updated at runtime, generally we update 

the system in four steps: 1) generate a new Java class or 

multiple new Java classes for updated rules, 2) compile the 

generated Java classes, 3) update the mapping table, and 4) 

remove the affected entries in the accessibility cache. In step 3, 

if the corresponding entry exists in the mapping table, the 

system updates the entry with a new package name, a new 

class name, and a new method name. In addition, if the rules 

for new subjects are added to the policy, new entries are 

inserted into the mapping table. In case the class file affected 

by the policy update resides in memory, we remove the 

corresponding entry from onMemTable which enables the 

system to reload the class instance. 

Easy updating is also a significant improvement from our 

previous approaches [25, 26] in which policy update leads to a 

re-computation of the entire access control table or the entire 
policy matching tree. If rules are updated while rule functions 

are being executed, one can either re-execute the rule functions 
after the update or wait until the current evaluation finishes 

before updating the rule functions. The appropriate strategy 
depends on the system configuration and requires further 

investigation. 

7.  Experiments 

In this section, we describe our experiments to evaluate the 

performance of our function-based access control mechanism 

for XML documents. All of the experiments were conducted 

on a machine with 1.8GHz Pentium 4 CPU, 1.5GB of main 

memory, and IBM JDK1.4.2.  

To demonstrate the scalability of the system, we examine 

the memory cost when a large access control policy is loaded 

into main memory, and the access control processing time 

when a large XML document is processed. To show the 

expressiveness of the access control specification, we also run 

experiments involving predicates and //. In addition, we show 

the performance gains achieved with the accessibility cache. 

7.1 Results of the Experiments 

Scalability to large access control policies 

The main purpose of this experiment is to see whether the 

function-based model can support large access control policies. 

For simplicity, we specified 2,000,000 access control rules for 

80,000 users for the Orders document type. Each user is 

associated with a set of 25 access control rules specified with 

simple path expressions and +r. 

We varied the group size from 50 to 100; hence, 2,000,000 

rules were translated into 800 to 1,600 Java classes. In the test, 

we managed to load all of the rules into the main memory in a 

random order without any Java garbage collection (GC) 

triggered. Memory cost was independent of group size and is 

close 58MB. 

Scalability for large-scaled XML document 

In many systems, XML-formatted documents for record 

retention may be several hundred megabytes in size. In this 

experiment, we show the performance of the system by 

examining the total processing time when the XML documents 

shown in Table 2 are accessed.  

Table 2 XML document information for experiments 

  Size Rulest D-rate(%) 

D1 Orders.xml 4MB 25 99.8 

D2 standard.xml 111MB 514 99.97 

For each subject, we specified 25 access control rules for 

Orders.xml, and 514 rules for standard.xml. All rules specified 

a +r permission. Both documents contain repeated 

sub-structures and so part of the access control is duplicated at 

multiple locations. In Table 2, the fraction of duplicated paths 

is shown as the D-rate and we can see that standard.xml has 

more duplicated sub-trees than Orders.xml.  

We used the SAX API of the XML parser to parse the entire 

document, and checked the accessibility when encountering 

either an element or an attribute. The processing time includes 

XML parsing time, Java class loading time, access control time, 

and GC time if any GC occurs. In this experiment, we label the 

total time excluding parsing time as AC Time. We also 

measured the performance improvement achieved with 

caching. In Figure 5, the processing times of the entire 

documents are shown. 

 

 

 

 

 

 

 

 

Figure 5 Processing time for D1 and D2 

From the figures, it is clear that the accessibility cache makes 

a significant improvement in processing time. In the case of 

Orders.xml, the accessibility cache reduces the AC time by 

almost 50%. In the case of standard.xml, the AC time is 

reduced by 60-70%. Since the duplication rate of standard.xml 

is higher than that of Orders.xml, the accessibility cache is 

more effective when processing standard.xml. 
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Access control performance 

The access control cost on a simple path is less than 3 

microseconds per path. In the case of R, it cost around 2.2 

microseconds per path, which is 20% less than for r. In our 

implementation, the performance for // depends on the 

performance of the java.util.regex package. The experimental 

results show the accessibility check involving // requires 5 to 

5.5 microseconds per path compared to the 2.2 microseconds 

of R. Though // can be supported with reasonable performance, 

we recommend using R instead of // where applicable. 

In our previous work [25], the access condition table driven 

access control model performs a little faster in that it takes 

approximately 2.0 microseconds per path. However, since the 

access control table is generated for the whole policy set, the 

memory consumption is massive when the policy is huge 

comparing to this rule function based approach. Moreover, in 

[25], the access control enforcement on predicates and // are 

not provided by the system that the user has to implement the 

enforcement by themselves. 

Moreover, this approach performs better than the approach 

with a policy matching tree [26].  

8.  Conclusion and Future Works 

In this paper, we have proposed a scalable access control 

model for providing expressive and efficient access control for 

XML databases. High scalability is achieved by grouping rule 

functions into Java classes and further organizing classes into 

packages. Each class is the unit for memory management and 

policy update. To improve performance, we enhance the access 

control system with a cache mechanism which eliminates the 

need for function invocation when the same path is accessed 

repeatedly by the same user. As an extended work, the system 

supports multi-subject environment. 

In future work, we plan to explore deeper on the efficiency 

to see specific conditions for the model. We also plan to 

explore the generation of efficient rule functions by sharing 

more Java code inside the rule functions, which leads to less 

memory usage and more efficient class loading. We also plan 

to extend the predicate evaluation mechanism so that fewer 

database queries are made to retrieve the data values required 

for predicate evaluation. 
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