
DEWS2006 4A-i9

A Scalable Access Control Model for XML Databases

Naizhen Qi Michiharu Kudo

{naishin, kudo}@jp.ibm.com

Tel: +81-46-215-4428, +81-46-215-4642

Fax: +81-46-273-7428

IBM Research, Tokyo Research Laboratory

1623-14, Shimotsuruma, Yamato-shi, Kanagawa 242-8502, Japan

Abstract XML databases involving sensitive information introduce a new challenge specific to scalable and efficient access

control for data protection. However, related approaches have suffered from scalability problems because they tend to work on

individual documents. In this paper, we propose a novel approach to XML access control through Java-based rule functions. A

rule function is an executable code fragment that encapsulates the access control rules of a specific user or group, and is shared

by all documents of the same document type. At runtime, the rule functions corresponding to the access request are loaded to

the main memory and executed to determine the accessibility of document fragments. Moreover, this approach enables an

efficient real-time update when the rules are updated. Using synthetic and real data, we show the scalability of the scheme by

comparing the accessibility evaluation cost.

Keyword XML, XML database, Access control, Security

1. Introduction

The Extensible Markup Language [6] is widely used for

data presentation, integration, and management because of its

rich data structure. In applications such as business transactions

and medical records, sensitive data may be scattered

throughout an XML document and access control on

node-level (element or attribute) is required to ensure that

sensitive data can only be accessed by authorized users. Access

control must be expressive and be able to support rules that

select data based on the location and value(s) of data. In

practical applications, such as electronic libraries, and credit

card companies, the number of access control rules is on the

order of millions, which is a product of the number of

document types (in 1000's) and the number of user roles (in

100's). It is obvious that such applications call for high

scalability and performance from the underlying access control

system.

Ideas to efficiently perform expressive access control have

been proposed in [2, 7, 10]. They are effective in searching for

access controlled nodes [2, 10], or eliminating unnecessary

accessibility checks at runtime [7]. These research efforts have

managed to improve the efficiency of expressive access

control; however, since they generally focus on document-level

optimizations basis on the access control rules, rule updates

may incur unacceptable costs. In our previous research [26], a

rule-based matching tree is constructed to achieve high

expressiveness which managed to handle 760,000 rules. And in

another previous research work [27], the rule number is

extended to 2,000,000 which obviously improves scalability.

The two previous approaches also share the point that they

both focus on uni-subject case in which each user is specified

to one subject. However, in many real applications, a user may

belong to multiple groups or domains that involve more

complicated and costing decision making for the multi-subject

environment. For example, when Alice is an employee and a

manager at the same time, both rules for the employee group

and the manager groups should be used to decide whether

Alice can access the department information.

In this paper, we extend the access control model introduced

in [27] and present an access control system with highlight on

multi-subject decision making. The novelty of this access

control model is the high scalability and the high performance.

The key idea is to encode the access control rules of each

subject as a rule function, and then further group the rule

functions to Java classes on the basis of the relationship

between subjects. Only the corresponded class is required to

reside in the memory and the rule function(s) are executed for

actual access evaluation. In addition, the related rule function is

executed only once for accessibility decision of the subject. As

far as we know, our Java-based approach is the first one that is

capable of supporting millions of access control rules

efficiently.

The rest of this paper is organized as follows. After

reviewing some preliminaries in Section 2, we introduce our

Java-based access control model in Section 3. Section 4

describes how to generate rule functions from the access

control policy. In Section 5, the limitations and optimization of

rule function grouping are introduced. Runtime access control

enforcement is introduced in Section 6, and experimental

results are reported in Section 7. In Section 8 we summarize

our conclusions and future work.

1.1 Related Work

Many approaches for enforcing XML access control have

been proposed. Some of them [14, 20] support full XPath [8]

expressions to provide expressiveness by creating the

projection of the policy on a DOM [16] tree. However, these

approaches incur massive costs when handling a large policy

or a deeply layered XML document. The mechanisms

proposed in [1, 3, 9, 10] perform more efficiently but also

encounter the same problem since the node-level access

control on a DOM-based view can be expensive when

processing large numbers of XML documents.

To overcome this problem, several efficient access control

models have been proposed [22, 25]. Qi et al. [25], our

previous research, presents a method performing in

near-constant time regardless of the number of rules. This is

achieved by using an access condition table which is generated

from the access control rules independent of the XML data.

However, this approach places limitations on the XPath

expression, and does not provide an efficient runtime

evaluation mechanism for value-based conditions. We also

proposed a policy matching tree in [26] to achieve

expressiveness and scalability. Though this approach can

handle almost 760,000 rules, we developed another approach

[27] supporting 2,000,000 rules by converting the policy to a

group of rule functions in Java. Related Java classes are

compiled before runtime, then loaded to the main memory as

necessary and executed for the accessibility decision of a

subject. However, the approach does not support access control

enforcement when multiple subjects are involved for an

accessibility decision.

Murata et al. [22] optimizes pre-processing steps by

minimizing the number of runtime checks for determining the

accessibility of nodes in a query with automata. However, the

mechanism is limited to XQuery [5] and cannot handle other

query languages and primitive APIs such as DOM.

A different approach with document-level optimizations is

also proposed by Yu et al. [28]. Their scheme enforces efficient

access control with an accessibility map which is generated by

compressing neighboring accessibility rules to improve cost

efficiency. However, since the maps are generated on a

document-level, document updates or policy updates may

trigger expensive re-computations especially for a large XML

database.

Optimizations are also done in a number of research efforts

on XML query languages (e.g., XPath and XQuery). The

methods include query optimization based on (i) the tree

pattern of queries [7, 11, 24], (ii) XML data and XML schema

[13, 18, 19, 21]; and (iii) the consistency between integrity

constraints and schemas [12]. However, these perform efficient

data selection usually on document-level and require indices.

Therefore, in a large XML database, for instance, a database

with 10,000 document collections and 10,000 documents for

each document collection, such optimization mechanisms may

consume a prohibitive amount of space. Moreover, these

technologies are designed for XQuery and they cannot handle

other query languages and primitive APIs such as DOM.

2. Access Control Policy

Various access control policy models have been proposed.

We use the one proposed by Murata et al. [22] in which an

access control policy contains a set of 3-tuple rules with the

syntax
1
: <Subject, Permission Action, Object>.

The subject has a prefix indicating the type such as uid, role,

and group. Permission ‘+’ stands for a grant rule while ‘-’

means denial. The action value can be either read (r or R),

update, create, or delete. Due to lack of space, we focus on read

in this paper, as the others can be implemented with the same

1
 The policy syntax can be represented in XACML [23]. In

this paper, we use the above syntax for simplicity.

mechanism. The rule with +R or –R propagates read

permissions (grant or denial) downward to the entire sub-tree,

while +r grants a permission on the selected node only. As an

example, (uid:Alice, +r, /a) specifies that user Alice is allowed

to access /a but access to /a/b is implicitly specified since grant

is not propagated down to the descendants of /a. Moreover,

according to the denial downward consistency principle [22]

which stipulates that the descendants of an inaccessible node

are also inaccessible, accessibility dependence exists between

ancestors and descendants. Therefore, it is obvious that –r and

–R are equivalent, and thus we specify denial rules only with

–R in this paper. In addition, in order to maximize data security,

we (i) resolve access conflicts with the denial-takes-precedence

principle [22], and (ii) apply the default action of denying

permission on paths that have no explicit and implicit access

control specified.

3. Scalable Access Control Model

In this section, we describe a scalable access control model

that consists of a rule function, a mapping table, evaluation

results, and an evaluation algorithm. As an extension of the

previous work, we add a process in which multiple returned

values of the rule functions are combined to the final

accessibility result. The process could be defined regarding to

the application requirements.

3.1 Rule Functions

A rule function is the basic fragment in Java that performs

access control on a specific subject. The rule function receives

the accessed path and returns an evaluation result to the caller.

If a user owns multiple subjects, when Alice participating in

multiple user groups for example, multiple rule functions are

bound for accessibility evaluation.

In our previous work [27], two types of rule functions are

introduced that one is indexed by the object, and the other one

is indexed by the subject. However, the former model is not

able to support the multi-subject environment since the

accessibility decision mechanism may be different regarding to

the application requirements when multiple subjects involve.

3.2 Evaluation of Accessibility

Given a requested path of a request, the rule function returns

an evaluation result in accordance with both the action

permission and the propagation property of the appropriate rule.

There are four types of evaluation results as Table 1 shows.

Table 1 Evaluation results of a rule function

Access effect Evaluation Result

+r GRANT_ON_NODE

+R GRANT_ON_SUBTREE

-R DENY

Nothing UNDECIDED

As Table 1 shows, positive authorization is defined by

GRANT_ON_NODE, and by GRANT_ON_SUBTREE

which propagates access permissions to the sub-tree. When

access is denied, the evaluation result of the descendants is also

DENY due to the denial downward consistency principle.

UNDECIDED is returned when the accessed path is not

covered by any rule. Access is denied by default if no further

access control is specified by other rules.

3.3 Mapping Tables

A mapping table is the key component that connects an

access request, which contains one or multiple subjects, to the

appropriate rule functions for accessibility evaluation. We

define a mapping table which holds subject as key and the

3-tuple of package name, class name, and function name as its

value.

In addition, when handle a large-scaled policy, we can

construct a hierarchical mapping table to achieve scalability

that each Java package contains a single mapping table.

3.4 Evaluation Algorithms

Based on the defined components (rule functions, evaluation

results, and mapping tables), our model computes a decision

result of an access request based on the following algorithms.

The requirement of our approach is: The access control policy

must satisfy the consistency that all of the ancestors of a

descendant specified with grant accessibility should be

accessible as well.

Given the path and the subjects of the access request, the
corresponding entry of each subject is looked up in the
mapping table. If the corresponding entry exists, the rule

function with the name found in the table is invoked and

executed. Since rule functions for multiple subjects may return

different Boolean results, true or false, for the same request.

The mechanism to combine all of the returned values for a final

accessibility result may be different regarding to the application

requirements. Therefore, we separate the combination

procedure away from the evaluation mechanism.

3.5 Result Combination Process

When a user is bound to multiple subjects, since multiple

run functions may result in different Boolean results, true or

false, to combine the results with denial-take-precedence

principle or grant-take-precedence principle should be decided

by the application requirements.

The relationship between the concerned subjects can be

joined. For example, Alice is both the employee and the

manager. Therefore, Alice’s access request should be evaluated

with the rules specified for the employee group and the

manager group. Since manager usually has the higher privilege

than employee, if the access to a path is denied by the

employee group but granted by the manager group, as a final

accessibility result the access is granted. In this case,

grant-take-precedence principle is used to combine the results.

However, denial may override grant in some applications to

guarantee the maximize security. It is obvious that different

with other components of this access control model, the result

combination process is application dependant.

4. Rule Function Generation

A policy is converted to a group of rule functions. During the

conversion, both simple paths and paths involving // or

predicates are coded as rule functions as well. Since various

rules are specified for the same subject, the execution order of

the rules in a rule function directly decides the accessibility

result for the subject with the consideration of the

denial-take-precedence and the propagation mechanism. As a

consequence, the rules are converted into the code fragments in

the order of –R, +R, and then +r. The details of the conversion

order and the conversion algorithm are introduced in [27]. In

this section, we briefly present some rule function examples.

4.1 Policy with Simple Path

In the rule function model, the access control policy is first

sorted by subjects. For each subject and subset of rules

corresponding to that subject, a rule function is produced

containing code that implements those rules. Inside a rule

function, the rules are distinguished by the object, and the

evaluation result is coded as the return value when the accessed

path satisfies the object condition. As an example, we have a

rule subset of the access control policy P1 contains

(1) Rule(Alice, +r, /a) (2) Rule(Bob, +R, /a).

Figure 1 shows the rule function for (1) and (2).

Figure 1 Example for P1

4.2 Policy with //

A path expression containing // selects nodes whose position

in the data structure is not known precisely and therefore the

path may map to multiple specific paths. Matching in a rule

function is performed by regular expressions and the

java.util.regex package. For instance, the third rule in P1 is (3)

Rule(Bob, -R, /a//d). The rule function for Bob is generated as

Figure 2 shows. Note that -R rule is converted first, then

coming up with +R.

Figure 2 Example handing //

4.3 Policy with Predicates

An object containing a predicate(s) is first pre-processed by

separating the predicate(s) pred and the path p, then both pred

and p are programmed in the rule function for the subject.

A predicate is a condition comparing XML data or a

conjunction of such conditions. The comparisons are

performed through the mathematical operators, =, <>, <, ≤ , >,

and ≥ . These mathematical operators are translated to Java

code to enforce predicate evaluation. Since predicate

evaluation requires XML data stored in the XML database, the

data referenced in the predicate needs to be retrieved before the

evaluation. Therefore, an API, retrieveData, is provided to

retrieve the required data. retrieveData has two parameters: the

requested node name n, and the path expression p of the node

1 static Pattern p1 = Pattern.compile("/a/.*/d|/a/.*/d/.*");

2 static public Integer rf_Bob(String path) {

3 Matcher m1 = p1.matcher(path);

4 if (m1.matches()) // for (3)

5 return DENY;

6 else if (path.startsWith(“/a”)) // for (2)

7 return GRANT_ON_SUBTREE;

8 return UNDECIDED;

9 }

// the rule function for Alice

1 static public Integer sf_Alice(String path) {

2 if (path.equals(“/a”)) // for (1)

3 return GRANT_ON_NODE;

4 else return UNDECIDED;

5 }

// the rule function for Bob

6 static public Integer rf_Bob(String path) {

7 if (path.startsWith(“/a”)) // for (2)

8 return GRANT_ON_SUBTREE;

9 else return UNDECIDED;

10 }

imposed by the predicate. Since at runtime the DBMS has the

position information pos of the requested node, the position of

n can be found by traversing from pos to p. For example, we

have a Record document type which contains order details.

Each order is identified with a unique customer ID, the

CustKey element. To guarantee that a customer can only see

their own order details, the access control policy P2 can be

Rule(role:customer, +r, /Orders)

Rule(role:customer, +R, /Orders/Order[CustKey=$custID])

In P2, $custID is a system variable which is automatically

set when a customer logs in. The value of $custID is obtained

by obtainSystemData which is another API returning the value

of the system global variables. Assuming that the object

DataCenter implements both APIs, the Java program fragment

for handling the predicate evaluation is as shown in Figure 3.

If the rule contains multiple predicates, the Java code for the

conjunction of the predicates is encoded.

Figure 3 Code fragment for predicate CustKey=$custID

5. From Rule Functions to Java Classes

5.1 Size Limitations

Owing to Java-based implementation, we group rule

functions to Java classes to gain easy memory management

provided by the Java Virtual Machine. The simplest way is to

construct a Java class holding all of the rule functions.

However, since in the Java Virtual Machine, the total sizes of

heap and stack cannot exceed 65,536, which means the

maximum number of rule functions, or subjects, is 65,536, and

either the method size or the class size cannot exceed 65,536

bytes at meanwhile.

We checked 22 types of XML-based applications to see the

number of paths in XML instances, and then we found the

number is no more than 300 and most of them are below 100.

If we specify a rule on each path for each subject, and each rule

usually costs less than 100 bytes, then we can say that each rule

function is less than 10,000 bytes. It is clear that in most cases

we can group the rules sharing the same subject into a single

rule function without violating the size limitation.

One more important factor in rule function grouping that

affects the runtime performance is the file number in a Java

package. For example, in Windows operation system, time for

looking up a specific file turns costing when the file number in

a directory exceeds 1024. As a result, we group at most 1024

Java classes in each Java package.

However, the number of the subjects may reach to several

millions in some cases. For instance, a credit card company

may prepare access control rules for each client. Therefore, rule

functions, whose number may reach about millions, should be

grouped into multiple Java classes. Besides that, the number of

rule functions in each Java class should be decided also based

on the rule number for each subject. From the experimental

results shown in experimental results, we found the memory

cost is independent of the rule number for each Java class, but

time for loading from disk to main memory is directly

influenced by Java class size.

5.2 Group Optimization

The multi-subject environment requires multiple rule

functions to be executed for the accessibility result of an access

request. To make the number of the classes on memory as few

as possible, rule functions may be executed for an access

request should be grouped into the same Java class as much as

possible.

Therefore, except the access control policy, we introduce the

subject specification to the system. In the subject specification,

the subjects that possibly bound to the same user are list up. For

instance, {{Sub1, Sub2, Sub5} {Sub1, Sub3, Sub4}} shows

two subject groups that a user may belong to Sub1, Sub2, and

Sub5, or Sub1, Sub3, and Sub4. When group rule functions to

Java classes, the rules functions for Sub1, Sub2, and Sub5 are

constructed to a Java class while Sub1, Sub3, and Sub4 for

another. It is clear that the rule function for Sub1appears in two

Java classes.

6. Function-based Access Control System

6.1 Access control system

The proposed function-based access control system is

constructed through Access Control Modeling and Model

Deployment as Figure 4 shows.

Figure 4 Function-based access control system

In Access Control Modeling, the access control policy is

converted to Java classes where each class represents the

access control rules for a certain number of subjects or objects.

During this modeling, the corresponding mapping table is

generated as well. In addition, the Java code fragments are

compiled into bytecode so that they can be executed.

Another process, Model Deployment, initially loads the Java

mapping table into main memory, and then prepares another

empty system global table, onMemTable, that stores in main

memory Java object instances that are required to process an

access request. Since each function group has a unique name,

onMemTable uses the group name as a key and associates it

with the corresponding object instance.

At runtime, given an access request containing subjects and

a simple path expression, the access control system runs the

evaluation to get the decision result. The rule function for each

subject is executed individually by Evaluation Process, and

Access Control

Policy

Access Control

Model

Access Control

Modeling

XMLXML

DBMS Access Control

Engine

Access Request

Grant/Deny

Application

Model

Deployment

onMemonMem

TableTable
CacheCache

Evaluation

Proc.

Result Combine

Proc.

String value0 = DataCenter.retrieveData(“CustKey”, “/Orders/Order”);

String value1 = DataCenter.obtainSystemData(“custID”);

if (value0.equals(value1))

return GRANT_ON_SUBTREE;

else

return UNDECIDED;

String value0 = DataCenter.retrieveData(“CustKey”, “/Orders/Order”);

String value1 = DataCenter.obtainSystemData(“custID”);

if (value0.equals(value1))

return GRANT_ON_SUBTREE;

else

return UNDECIDED;

then the results are combined by Result Combine Process for a

final accessibility result. If the accessibility result returns

DENY, the access denied response will be sent back to the user

without data retrieval from the XML database. Otherwise, the

output is generated after retrieving the data value from the

database and returned to the user. Caching can be employed in

both the access control system and the DBMS to reduce cost of

the accessibility evaluations.

This system separates the access control system from the

database engine so that security-related support is not required

from the underlying database. This enables any XML DBMS,

even off-the-shelf products, to provide scalable access control.

6.2 Policy update

The Java-based implementation loads the required classes

into memory and so any updates to the classes residing on disk

will not automatically change those in memory. But the class

reload mechanism provided by Java can be utilized when we

wish to update memory-resident classes. Class reloading

provides a simple and low-cost solution to supporting policy

updates.

When the policy is updated at runtime, generally we update

the system in four steps: 1) generate a new Java class or

multiple new Java classes for updated rules, 2) compile the

generated Java classes, 3) update the mapping table, and 4)

remove the affected entries in the accessibility cache. In step 3,

if the corresponding entry exists in the mapping table, the

system updates the entry with a new package name, a new

class name, and a new method name. In addition, if the rules

for new subjects are added to the policy, new entries are

inserted into the mapping table. In case the class file affected

by the policy update resides in memory, we remove the

corresponding entry from onMemTable which enables the

system to reload the class instance.

Easy updating is also a significant improvement from our

previous approaches [25, 26] in which policy update leads to a

re-computation of the entire access control table or the entire
policy matching tree. If rules are updated while rule functions

are being executed, one can either re-execute the rule functions
after the update or wait until the current evaluation finishes

before updating the rule functions. The appropriate strategy
depends on the system configuration and requires further

investigation.

7. Experiments

In this section, we describe our experiments to evaluate the

performance of our function-based access control mechanism

for XML documents. All of the experiments were conducted

on a machine with 1.8GHz Pentium 4 CPU, 1.5GB of main

memory, and IBM JDK1.4.2.

To demonstrate the scalability of the system, we examine

the memory cost when a large access control policy is loaded

into main memory, and the access control processing time

when a large XML document is processed. To show the

expressiveness of the access control specification, we also run

experiments involving predicates and //. In addition, we show

the performance gains achieved with the accessibility cache.

7.1 Results of the Experiments

Scalability to large access control policies

The main purpose of this experiment is to see whether the

function-based model can support large access control policies.

For simplicity, we specified 2,000,000 access control rules for

80,000 users for the Orders document type. Each user is

associated with a set of 25 access control rules specified with

simple path expressions and +r.

We varied the group size from 50 to 100; hence, 2,000,000

rules were translated into 800 to 1,600 Java classes. In the test,

we managed to load all of the rules into the main memory in a

random order without any Java garbage collection (GC)

triggered. Memory cost was independent of group size and is

close 58MB.

Scalability for large-scaled XML document

In many systems, XML-formatted documents for record

retention may be several hundred megabytes in size. In this

experiment, we show the performance of the system by

examining the total processing time when the XML documents

shown in Table 2 are accessed.

Table 2 XML document information for experiments

 Size Rulest D-rate(%)

D1 Orders.xml 4MB 25 99.8

D2 standard.xml 111MB 514 99.97

For each subject, we specified 25 access control rules for

Orders.xml, and 514 rules for standard.xml. All rules specified

a +r permission. Both documents contain repeated

sub-structures and so part of the access control is duplicated at

multiple locations. In Table 2, the fraction of duplicated paths

is shown as the D-rate and we can see that standard.xml has

more duplicated sub-trees than Orders.xml.

We used the SAX API of the XML parser to parse the entire

document, and checked the accessibility when encountering

either an element or an attribute. The processing time includes

XML parsing time, Java class loading time, access control time,

and GC time if any GC occurs. In this experiment, we label the

total time excluding parsing time as AC Time. We also

measured the performance improvement achieved with

caching. In Figure 5, the processing times of the entire

documents are shown.

Figure 5 Processing time for D1 and D2

From the figures, it is clear that the accessibility cache makes

a significant improvement in processing time. In the case of

Orders.xml, the accessibility cache reduces the AC time by

almost 50%. In the case of standard.xml, the AC time is

reduced by 60-70%. Since the duplication rate of standard.xml

is higher than that of Orders.xml, the accessibility cache is

more effective when processing standard.xml.

Processing time

0

2000

4000

6000

8000

10000

12000

14000

16000

D1 D1(Cache) D2 D2(Cache)

T
im
e
 (
m
s
)

AC Time

Parsing time

Access control performance

The access control cost on a simple path is less than 3

microseconds per path. In the case of R, it cost around 2.2

microseconds per path, which is 20% less than for r. In our

implementation, the performance for // depends on the

performance of the java.util.regex package. The experimental

results show the accessibility check involving // requires 5 to

5.5 microseconds per path compared to the 2.2 microseconds

of R. Though // can be supported with reasonable performance,

we recommend using R instead of // where applicable.

In our previous work [25], the access condition table driven

access control model performs a little faster in that it takes

approximately 2.0 microseconds per path. However, since the

access control table is generated for the whole policy set, the

memory consumption is massive when the policy is huge

comparing to this rule function based approach. Moreover, in

[25], the access control enforcement on predicates and // are

not provided by the system that the user has to implement the

enforcement by themselves.

Moreover, this approach performs better than the approach

with a policy matching tree [26].

8. Conclusion and Future Works

In this paper, we have proposed a scalable access control

model for providing expressive and efficient access control for

XML databases. High scalability is achieved by grouping rule

functions into Java classes and further organizing classes into

packages. Each class is the unit for memory management and

policy update. To improve performance, we enhance the access

control system with a cache mechanism which eliminates the

need for function invocation when the same path is accessed

repeatedly by the same user. As an extended work, the system

supports multi-subject environment.

In future work, we plan to explore deeper on the efficiency

to see specific conditions for the model. We also plan to

explore the generation of efficient rule functions by sharing

more Java code inside the rule functions, which leads to less

memory usage and more efficient class loading. We also plan

to extend the predicate evaluation mechanism so that fewer

database queries are made to retrieve the data values required

for predicate evaluation.

9. References

[1] E. Bertino, S. Castano, E. Ferrari, and M. Mesiti:

Controlled access and dissemination of XML documents.

ACM WIDM (1999) pp.22-27.

[2] E. Bertino, S. Castano, E. Ferrari, and M. Mesiti:

Specifying and Enforcing Access Control Policies for XML

document Sources. World Wide Web Journal (2000), Vol. 3,

No. 3, pp. 139-151.

[3] E. Bertino and E. Ferrari: Secure and selective

dissemination of XML documents. ACM TISSEC (2002)

pp.290-331.

[4] M. Bishop, L. Snyder. The transfer of information and

authority in a protection system. Proc. 17th ACM Symposium

on Operating Systems Principles, 1979.

[5] S. Boag, D. Chamberlin, M. F. Fernandez, D. Florescu, J.

Robie, and J. Simeon: XQuery 1.0: An XML query language,

W3C Working Draft 12 November 2003.

http://www.w3.org/TR/xquery/.

[6] T. Bray, J. Paoli, and C. M. Sperberg-McQueen: Extensible

Markup Language (XML) 1.0. W3C Recommendation.

http://www.w3g.org/TR/REC-xml (Feb. 1998).

[7] S. Cho, S. Amer-Yahia, L. V. S. Lakshmanan, and D.

Srivastava: Optimizing the secure evaluation of twig queries.

VLDB (2000) pp.490-501.

[8] J. Clark and S. DeRose: XML Path Language (XPath)

version 1.0. W3C Recommendation. Available at

http://www.w3g.org/TR/xpath, 1999.

[9] E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, and

P. Samarati: Design and Implementation of an Access Control

Processor for XML documents. WWW9 (2000).

[10] E. Damiani, S. De Capitani di Vimercati, S. Paraboschi,

and P. Samarati: A Fine-Grained Access Control System for

XML Documents. ACM TISSEC (2002) pp.169-202.

[11] A. Deutsch and V. Tannen: Containment of regular path

expressions under integrity constraints. KRDB (2001).

[12] W. Fan and L. Libkin: On XML integrity constraints in the

presence of DTDs. Symposium on Principles of Database

Systems (2001) pp.114-125.

[13] M. F. Fernandez and D. Suciu: Optimizing regular path

expressions using graph schemas. ICDE (1998) pp.14-23.

[14] A. Gabillon and E. Bruno: Regulating Access to XML

Documents. Working Conference on Database and Application

Security (2001) pp.219-314.

[15] L. Gong: A Secure Identity-Based Capability System.

Proc. IEEE Symposium on Security and Privacy, pp.56-65,

1989.

[16] A. L. Hors, P. L. Hegaret, L. Wood, G. Nicol, J. Robie, M.

Champion, and S. Byrne: Document Object Model (DOM)

Level 3 Core Specification.

http://www.w3.org/TR/2004/PR-DOM-Level-3-Core-2004020

5 (2004)

[17] A. K. Jones, R. J. Lipton, and L. Snyder. A Linear Time

Algorithm for Deciding Security. Proc. 17th Symposium on

Foundations of Computer Science, Houston, Texas, pp. 33-41,

1976.

[18] R. Kaushik, P. Bohannon, J. F. Naughton, and H. F. Korth:

Covering indexes for branching path queries. ACM SIGMOD

(2002) pp.133-144.

[19] D. D. Kha, M. Yoshikawa, and S. Uemura: An XML

Indexing Structure with Relative Region Coordinate. ICDE

(2001) pp.313-320.

[20] M. Kudo and S. Hada: XML Document Security based on

Provisional Authorization. ACM CCS (2000) pp.87-96.

[21] Q. Li and B. Moon: Indexing and Querying XML Data

for Regular Path Expressions. VLDB (2001) pp.361-370.

[22] M. Murata, A. Tozawa, M. Kudo and H. Satoshi: XML

Access Control Using Static Analysis. ACM CCS, 2003.

[23] OASIS. OASIS Extensible Access Control Markup

Language (XACML), Feb. 2003.

http://www.oasis-open.org/committees/xacml/docs.

[24] F. Neven and T. Schwentick: XPath containment in the

presence of disjunction, DTDs, and variables. ICDT (2003)

pp.315-329.

[25] N. Qi and M. Kudo: Access-condition-table-driven access

control for XML databases. ESORICS (2004).

[26] N. Qi and M. Kudo: XML Access Control with Policy

Matching Tree. ESORICS (2005).

[27] N. Qi, M. Kudo, J. Myllymaki, and H. Pirahesh. A

Function-based Access Control Model for XML Databases,

ACM CIKM (2005).

[28] T. Yu, D. Srivastava, L. V. S. Lakshmanan, and H. V.

Jagadish: Compressed Accessibility Map: Efficient Access

Control for XML. VLDB (2002) pp.478-489.

