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Abstract 
 

Efficient and accurate similarity searching for a large 
amount of time series data set is an important but non-trivial 
problem. Many dimensionality reduction techniques have 
been proposed for effective representation of time series data 
in order to realize such similarity searching, including 
Singular Value Decomposition (SVD), the Discrete Fourier 
transform (DFT), the Adaptive Piecewise Constant 
Approximation (APCA), and the recently proposed Symbolic 
Aggregate Approximation (SAX).  

In this work we propose a new extended approach based 
on SAX, called Extended SAX in order to realize efficient 
and accurate discovering of important patterns, necessary 
for financial applications. While the original SAX approach 
allows a very good dimensionality reduction and distance 
measures to be defined on the symbolic approach, SAX is 
based on PAA (Piecewise Aggregate Approximation) 
representation for dimensionality reduction that minimizes 
dimensionality by the mean values of equal sized frames. 
This value based representation causes a high possibility to 
miss some important patterns in some time series data such 
as financial time series data.  

Extended SAX, proposed in the paper, uses additional two 
new points, that is, max and min points, in equal sized 
frames besides the mean value for data approximation. We 
show that Extended SAX can improve representation 
preciseness without losing symbolic nature of the original 
SAX representation. We empirically compare the Extended 
SAX with the original SAX approach and demonstrate its 
quality improvement.  
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1. Introduction 
 
Efficient and accurate similarity searching for a large 
amount of time series data set is an important but non-
trivial problem. Many dimensionality reduction 
techniques [1, 2, 3, 4, 5, 7] have been proposed for 

effective representation of time series data. Symbolic 
Aggregate Approximation (SAX) was proposed as a 
new method for time series data representation [3].  

In this work, we propose a new extended approach 
based on SAX which we call Extended SAX. The 
original SAX approach allows a very good 
dimensionality reduction and distance measures to be 
defined on the symbolic approach. However, SAX is 
based on the PAA representation for dimensionality 
reduction that minimizes dimensionality by the mean 
values of equal sized frames. This mean value based 
representation causes a high possibility to miss some 
important patterns in some time series data such as 
financial time series data.  

Financial time series data has its own 
characteristics over other time series data. One of its 
special characteristics is that it is typically 
characterized by a few critical points and multi-
resolution consideration is always necessary for long-
term and short-term analyses. Second one is that 
financial time series data is continuous, large and 
unbound. There are many technical analytical methods 
for financial time series data to identify patterns of 
market behavior. In those financial analytical methods, 
critical or extreme points, which the original SAX 
cannot handle, are very important to discover. To 
reduce a loss of these important points, Extended SAX 
representation especially for financial data analysis and 
mining tasks is proposed.  

The rest of this paper is organized as follows. 
Section 2 briefly discusses the existing research work 
on time series data mining. Section 3 introduces our 
proposed approach, and discusses its dimensionality 
reduction and quality improving abilities. Section 4 
contains an experimental evaluation of the approach. 
Finally, Section 5 offers some conclusions and 
suggestions for future work. 
 



 

 

2. Background 
 

In time series data study, the well defined and 
approximated representation for the original data is the 
most important topics in order to solve many time 
series data mining problems. Many approaches and 
techniques that address the time series data 
representation, have been proposed in the past decade.  

Most commonly used representations are the 
Discrete Fourier Transform (DFT) [1], the Discrete 
Wavelet Transform (DWT) [2], Singular Value 
Decomposition (SVD) [4], Adaptive Piecewise 
Constant Approximation (APCA) [5], , and Piecewise 
Aggregate Approximation (PAA) [4,7]. Recently, one 
promising representation method was proposed called 
Symbolic Aggregate Approximation (SAX) [3]. 

The basic idea of our method proposed in the 
paper, is based on the last two approaches among these 
representation techniques. These two methods are the 
PAA and the SAX representations, which are briefly 
described below in this section. 

 
2.1. Piecewise Aggregate Approximation (PAA) 
 

Yi and Faloutsos [7] and Keogh et al. [4] 
independently proposed PAA. In PAA, each sequence 
of time series data is divided into k segments with 
equal length and the average value of each segment is 
used as a coordinate of a k-dimensional feature vector. 
The advantages of this transform are that 1) it is very 
fast and easy to implement, and 2) the index can be 
build in linear time. 

According to [3], “to reduce the time series from n 
dimensions to k dimensions, the data is divided into k 
equal sized segments. The mean value of the data 
within a segment is calculated and a vector of these 
values becomes the data-reduced representation” as 
shown in Figure 1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

More formally, as defined in [3], “a time series C 
of length n can be represented in a k-dimensional space 
by a vector k and the ith element of C is calculated by 
the following equation”: 
 
 
 
 
 

 
However the PAA approach has numerous other 

advantages over other techniques, it also has some 
disadvantages. As noted in the introduction section, the 
PAA approach minimizes dimensionality by the mean 
values of equal sized frames. This mean value based 
representation may cause a possibility to miss some 
important patterns in some time series data analysis. 
 
2.2. Symbolic Aggregate Approximation (SAX) 
 

Lin and Keogh et al. [3] proposed new approach 
called SAX. SAX is based on PAA [4, 7] and assumes 
normality of the resulting aggregated values. As noted 
by authors [3], SAX is the first symbolic representation 
of time series with an approximate distance function 
that lower bounds the Euclidean distance.  

In SAX, firstly the data is transformed into the 
PAA representation and then the transformed PAA 
representation is symbolized into a sequence of 
discrete strings.  

As said in [3], there are two important advantages 
to doing this: 
 

 Dimensionality Reduction: “Dimensionality 
reduction of PAA [4, 7] is automatically 
carried over to this representation.” 

 Lower Bounding: Distance measure between 
two symbolic strings can be proved “by 
simply pointing to the existing proofs for the 
PAA representation itself ”. 

 
In order to obtain string representation after a time 

series data is transformed into the PAA representation, 
symbolization region should be determined. According 
to [3], by empirically testing more than 50 datasets, it 
was defined that normalized subsequences have highly 
Gaussian distribution.  
 
Definition 1 [3]: “Breakpoints: breakpoints are a 
sorted list of numbers Β = β1,…,βa-1 such that the area 
under a N(0,1) Gaussian curve from βi to βi+1 = 1/a ( β0 
and βa are defined as -∞ and ∞, respectively).” 
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Figure 1: A time series C is represented 
by PAA (by the mean values of equal 
segments). In the example above, the 
dimensionality is reduced from n = 60 
to k = 6.  
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Figure 2: A time series is discretized by 
SAX. In the example above, with n = 
60, k = 6 and a = 3, the time series is 
mapped to the word ABCBBA.  
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According to [3] “These breakpoints may be 
determined by looking them up in a statistical table”. 
For example, Table 1 gives the breakpoints for values 
of a changing from 3 to 5. 

 
 
 
 
 
 
 
 
 
 
 

As said in [3], using these defining breakpoints, a 
time series can be discretized as “All PAA coefficients 
that are below the smallest breakpoint are mapped to 
the symbol “A,” all coefficients greater than or equal to 
the smallest breakpoint and less than the second 
smallest breakpoint are mapped to the symbol “B,” 
etc”. Figure 2 illustrates the idea. 

 
SAX has many advantages over other symbolic 

approaches such as dimensionality reduction power 
and lower bounding the Euclidean distance. But, as 
noted before, it has also some disadvantages such as 
the dimensionality reduction nature that has possibility 
to miss important patterns in some datasets. 
 
 

3. Extension of Symbolic Aggregate 
Approximation  
 
3.1. Adding two new values to represent time 
series 

 
In this section, a new proposed time series 

representation is introduced. It is based on the original 
SAX. As briefly explained previous section, SAX is 
based the PAA approach to reduce dimensionality of 
time series data. The PAA approach minimizes 
dimensionality by the mean values of equal sized 
segments. 

Minimizing dimensionality by the mean values of 
equal sized segments has many advantages such as fast, 
flexible and easy to implement. However, it has also 
some disadvantages for some kind of time series data, 
especially for financial time series data set. Our main 
research goal was to define effective and accurate 
algorithms to find extreme and unusual patterns in 
financial time series data by using the original SAX 
representation. But the original SAX approach was not 
suitable for financial time series data. It is because its 
dimensionality reduction nature, based on mean values 
approximation, has high possibility to miss some 
important patterns. Figure 3 shows intuition of this 
pattern missing characters of SAX. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In 3rd equal sized segment, shown in Figure 3, 
there are two very important and extreme, points, 
shown in small circle. In some kind of time series data 

Table 1 [3]: “A lookup table that 
contains the breakpoints that divides 
a Gaussian distribution in an 
arbitrary number (from 3 to 5).” 
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Figure 3: Financial time series data is 
represented by SAX.  Some 
important points (shown in red) are 
missing. (US$ and Japanese yen 
exchange rate data of 2 months.)  The 
SAX representation is CFCBFD. 
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     a 3 4 5 
β1 -0.43 -0.67 -0.84 
β2  0.43  0 -0.25 
β3   0.67  0.25 
β4    0.84 
 



 

 

research, especially in financial time series data, these 
kind of important points are very meaningful. From the 
figure 3, we can see the miss of two important points, 
shown in small circle, when financial time series data 
is represented by the original SAX approach. The mean 
value of the 3rd equal sized segment is represented as 
symbol “C”. But, in the segment, there are points 
which should be represented as symbol “F”, the max 
point of the segment, and symbol “A”, the min point 
of the segment. So, it is important to represent such 
important points, which is the motivation of our new 
extended approach.  

We extend SAX by adding two special new points, 
that is, max and min points of each segment, for each 
segment to fully represent time series data. Therefore, 
in our Extended SAX, three values for each segment, 
the original mean values and these additional two new 
points, min and max points, are used for time series 
data representation. 
 
3.2. Locating max, min, and mean values in 
segment 
 

As our Extended SAX approach is based SAX, we 
can get the mean values of the PAA of the financial 
time series. After obtaining PAA, we have the equal 
sized segments and its mean values. Then we define 
max and min values in the each segment. Figure 4 
illustrates the idea. Max values and min values are 
respectively shown in red circles and in blue squares, 
while mean values are shown in brown triangles in 
Figure 4.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

We have two additional values to represent time 
series beside mean value.  So, the positions of these 
three values are located in the segments, as shown in 
Figure 5. 

Locating process is done in the following manner. 
For any given segment Ck in a time series data , from 
both the beginning position Sk on the time axis, and the 
ending position Ek, the middle position pmid of the 
segment is be calculated using the following equation 
(Eq 2). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Supposed that s1, s2, and s3 are the first, the second, 
and the third the symbols in k-th segment and that pmax, 
pmid, pmin are positions of max, min, mean values in the 
k-th segment on the time axis. Also we assume that 
smax, smid, smin are strings of max, min, mean values in 
the k-th segment. Ordering of three strings in the k-th 
segments can be calculated by following expression. 
 
 
 
 
 
 
 
 
 
 

=
2

Sk + Ekpmid (2) 
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Figure 5: Intuition of locating 
process.  Locating the positions of 
three important values (max, min, 
mean).  pmax, pmid, pmin are their 
respective positions in the 
segment. 
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Figure 4: Financial time series data is 
represented by Extended SAX.  The 
Extended SAX representation is 
ACFFDFFCAABFFFFDCA. 
(US$ and Japanese yen exchange rate 
data of 2 months.) 
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<smax,smid,smin> if pmax < pmid < pmin 

<smin,smid,smax>  if  pmin < pmid < pmax 

<smin,smax,smid> if  pmin < pmax < pmid 

<smax,smin,smid > if  pmax < pmin < pmid 

<smid,smax,smin> if  pmid < pmax < pmin 

<smid,smin,smax>  otherwise 

<s1,s2,s3>= 

(3) 



 

 

The discretization of the three values is done as 
the similar way as the original SAX does, which 
defined in section 2.2. After the discretization, a 
sequence of symbols is obtained. We call it 
StringSequence S of time series data.  
Definition 2. String Sequence: A time series C = c1, c2, 
…, cn is represented by the Extended SAX using 
String Sequence S. S is a sequence of symbols 
<s1

1,s2
1,s3

1,s1
2,s2

2,s3
2,...,s1

j,s2
j,s3

j,...,s1
k,s2

k,s3
k > where 

<s1
j,s2

j,s3
j > is an ordered collection of strings for j-th 

segment calculated in the Eq.(3). 
 
3.3. Distance Function 
 

Extending the original SAX representation of time 
series, we need to define a distance measure on it. As 
noted before, the SAX representation is based on the 
PAA representation. Distance function of PAA is 
defined in [4, 7]. Given a query sequence Q, time 
series data C of the PAA representation of the same 
length n, Eq. 4 defines lower bounding approximation 
of the Euclidean distance: 

 
 
 
 
A proof that Dpaa(Q ,C) lower bounds the true 
Euclidean distance can be found in [4,7]. Since we use 
three symbols in each segment instead of one symbol, 
we can define distance function as following equation.  
 
 
 
 
 
where <s1, s2,…, sk> and  <r1, r2,…, rk > are string 
sequences of Qe and Ce, the Extended SAX 
representations of Q and C, respectively. As said in [3], 
“The dist() function can be implemented using a 
lookup tables such as illustrated in Table 1”. 
 
4. Preliminary experimental evaluation 
 

In the evaluation work, we show our new 
approach’s advantages, especially how accurate our 
approach is. We use both computer generated datasets 
and real datasets.  We used a real financial time series 
sets which are downloadable from the net [8, 9]. The 
average length of sequences in both generated and real 
datasets is 5000 points.  

Since our goal is to show the accuracy 
improvement of new approach, we performed 
subsequence search in datasets by the simple brute 
force algorithm. We searched the same length 

subsequence in the same datasets by both the original 
SAX representation and the proposed representation to 
show which one has the best accuracy.  Experiment 
process can be defined more formally as following: a 
query sequence Q and a time series datasets C. The 
task is to find all the subsequences in C that match Q. 
Subsequence matching requires the query Q to be 
placed at every possible segment within the dataset C. 
Firstly a query sequence Q and a time series datasets C 
both were represented by the original SAX. A query 
sequence Q is chosen as randomly from processing 
dataset. 

Then the subsequence search process was done. 
The same process was done in the new approach using 
the same length subsequence. We did experiments on 
20 datasets. Table 2 shows the result.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6 explains one example of the experimental 
results in Table 2. The picture a) is the query sequence. 
b) and c) are matched results by Extended SAX.  d), e), 
f), j) and i) are matched results by the original SAX.  

Extended SAX results, shown in b) and c), are 
much similar to the query Q compare with the original 
SAX. The original SAX gets 4 false results and only d) 
is similar to the query Q. As shown in Figure 6, it 
becomes clear that for the financial datasets, Extended 
SAX helps to detect important patterns and to improve 
detecting accuracy. From this preliminary evaluation, 
we can see that the original SAX matching will 
generate more false results.  

This result may be said that it is natural  
that the better result is achieved by using more 
information because ESAX uses more information for 
representing time series. In our experiment, the 
dimensionality reduction of the SAX is 16 and the 
dimensionality reduction of our approach is 48. It 
means that string representation of Extended SAX is 
three times longer than that of SAX. But if we compare 
the dimensionality reduction (48) of ESAX to the 
dimensionality reduction (16) of the original SAX, it is  

∑ k 

i=1 k 
n 2

(qi – ci ) Dpaa (Q,C) = 
 

(4) 

∑ k 

i=1 
k 
n 2

(dist(si, ri))De(Qe, Ce) = 
 

(5) 

Table 2: Average number of matching 
results of the SAX and the Extended SAX.  
The average point in datasets is 5000. 
Dimensionality reduction on the SAX is 16 
and on the Extended SAX is 48.  Alphabet 
size is a = 6 for both approaches. 

Methods Average number of 
matching results  

SAX 4.90 

ESAX 1.66 



 

 

not a big difference as we compare to the original data 
of 5000 points. If we compare the both dimensionality 
reductions (16, 48) to the average data points (5000) of 
the datasets, it is a big difference. But our approach 
shows capability to represent more meaningful 
representations than SAX does as explained in Figure 6. 

We are currently under further detail evaluation 
with much data set and more appropriate conditions. 
 
5. Conclusions and suggestions for future work 
 

In this work, we proposed the extended approach 
of SAX of time series data representation. By adding 
more important points in equal sized segments without 
losing symbolic nature of the original approach, 
Extended SAX provides a more meaningful 
representation for many different datasets, especially 
for the high frequency dataset such as financial dataset.  

In financial time series analysis, extreme point 
movements and high frequency movements of time 
series are very important and critical for financial 
decisions. We hope that our proposed approach can 
improve the accuracy of the financial time series 
analysis by more meaningful representation. 

There can be several future research directions 
using this approach. The preliminary experimental 
results presented here mainly focus on similarity 

searching. We think that this approach also can be 
effectively used for other data mining tasks such as 
clustering, anomaly detection, classification and other 
tasks. Since our approach increases dimensionality to 
represent time series more effectively, there may be 
more work to reduce dimensionality without losing the 
quality improvement. Lastly we are going to show 
low-bounding property of the distance function used in 
the paper.  
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Figure 6: Example of experiment results 
matched by the SAX and the Extended 
SAX. a) Query sequence, b) and c) 
Matched results by the Extended SAX, 
d), e), f), j) and i) Matched results by  
SAX. 
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