

The Strategies to Improve Performance of Function Mining
By Gene Expression Programming1

－Genetic Modifying, Overlapped Gene, Backtracking and Adaptive Mutation

Changjie Tang Lei Duan Jing Peng Huan Zhang and Yixiao Zhong

School of Computer Science, Sichuan University, Chengdu 610065, P. R. China
E-mail: {tangchangjie, duanlei}@cs.scu.edu.cn

Abstract This paper introduces the technologies to improve the performance of function mining by Gene Expression
Programming (GEP) developed in Sichuan University last year. The main results include: (a) Genetic Modifying Algorithm
(Trans-gene). By injection gene segment into genome, it guides the evolutional direction and speeds up knowledge discovery
process. (b) Overlapped gene expression. Borrowing the idea of overlap gene expression from biological study, it applies
overlapped gene expression, saves space for gene expression. (c) Backtrack-able GEP. Enlightened by atavism in biology, it
proposes backtrack-able GEP algorithms, designing Geometric Proportion Increased Checkpoint Sequence and Accelerated
Increased Checkpoint Sequence to restrict the backtrack process. (d) Adaptive Mutation. The mutation rate for each individual
can vary in evolution according to the value of fitness. Experiments show that these techniques boost the performance of GEP
by one or two magnitudes, respectively.

Keyword Template Knowledge discover, Gene Expression Programming, Function Mining

1 This work was supported by the National Science Foundation of China under Grant No.60473071, the National Research Foundation for

the Doctoral Program by the Chinese Ministry of Education under Grant No.20020610007.

1. Introduction
Gene Expression Programming (GEP) [1] is a new

member in the family of genetic computing. It combines
advantages in both Genetic Algorithms (GAs) and Genetic
Programming (GP). In GEP, candidate solutions are called
chromosomes and represented as linear strings with
fixed-length, and can be easily expressed as expression
trees (ETs). The GEP chromosome and its coding style are
designed so perfectly that chromosomes always alive
under various genetic operations, hence always results in
a valid expression tree. Based on the genetic operators
and the separation of genotype and phenotype, GEP is
endowed with more flexibility and power of exploring the
entire solution space compared with traditional GAs and
GP [2]. GEP offers great potentiality to solve complex
modeling and optimization problems and it has been used
to solve a large variety of problems efficiently, including
symbolic regression, function finding, classification, time
series analysis, logic synthesis and cellular automata, etc.
[3, 4, 5].

This paper gives a survey to the new techniques for
GEP developed in Sichuan University in 2005. It focuses
on the key idea of the strategies to improve the
performance in discovering function by Gene Expression
Programming, i.e. trans-gene, overlapped expression and
backtracking evolution and adaptive mutation.

2. The Basic Concepts and Terminologies
The main process of GEP is similar to its predecessors,

GAs and GP. The essential difference is: in GAs the
individuals are symbolic strings of fixed length; in GP the
individuals are non-linear entities of different sizes and
shapes; and in GEP the individuals are also non-linear
entities of different sizes and shapes, but these complex
entities are encoded as simple strings of fixed length. In
GEP, the expression trees consisting of the genetic
information encoded in the chromosomes. The
chromosome consists of a linear, symbolic string of fixed
length composed of one or more genes. GEP genes are
composed of a head and a tail. The head contains symbols
that represent both functions and terminals, whereas the
tail contains only terminals. For each problem, the length
of the head h is chosen, whereas the length of the tail t is
a function of h and the number of arguments of the
function with more arguments n, and is evaluated by the
equation: t = h (n – 1) + 1. Consider a gene for which the
set of functions F = {+, -, *, /}. In this case the maximum
arity of F is 2, then n = 2.

Through parsing the expression tree from left to right
and from top to bottom, the valid part of GEP genes can
be got. Thanks to the structural organization of GEP
genes, any modification made in the chromosome, no

matter how profound, always results in a valid expression
tree. So all programs evolved by GEP are syntactically
correct. Based on the principle of natural selection and
“survival for the fittest”, GEP operates iteratively
evolving a population of chromosomes, encoding
candidate solutions, through genetic operators, such as
selection, crossover, and mutation, to find an optimum
solution.

Other than C. Ferreira’s researches [1,2,3], several
studies based on GEP have been performed, such as
mining predicate association rule by GEP [5], predicting
time series based on GEP [6], and mining functions from
data set containing noise [7].

GEP algorithm begins with the random generation of
the chromosomes of the initial population. Then the
chromosomes are expressed and the fitness of each
individual is evaluated. The individuals are then
according to fitness to reproduce with modification,
leaving progeny with new traits. The individuals of this
new generation are, in their turn, subjected to the same
developmental process: expression of the genomes,
confrontation of the selection environment, and
reproduction with modification. If a solution of satisfied
quality is found, or a predetermined number of
generations is reached, the evolution stops and the
best-so-far solution is returned.

According to both fitness and the selection method,
individuals are selected to reproduce with modification,
creating the necessary genetic diversity allowing for
adaptation in the long run. In nature, several
modifications, like mutation, deletion, and insertion, are
introduced during the replication of the genomes. In basic
GEP algorithm, the genetic operators perform in an
orderly fashion, starting with replication and continuing
with mutation, transposition, and recombination.

The mutation operator aims to introduce random
modifications into a given chromosome. Of the operators
with intrinsic modification power, mutation is the most
efficient [1]. With mutation, populations of individuals
adapt very efficiently, allowing the evolution of good
solutions to virtually all problems. In GEP, there are three
transposition operators: insertion sequence (IS), root IS
(RIS) and gene transposition. The transposable elements
of GEP are fragments of the genome that can be activated
and jump to another place in the chromosome.
Furthermore, in GEP there are three kinds of
recombination: one-point recombination, two-point
recombination and gene recombination. In all types of

recombination, two chromosomes are randomly chosen
and paired to exchange some material between them,
resulting in the formation of two new individuals. The
implementations of mutation, transposition and
recombination are detailed in [1, 2].

3. The GEP with Genetic Modifying
3.1. The genetic modifying in Bio-engineering

The genetic modified technique in Bio-engineering
aims at creating new species or fastening evolution by
injection the classified or modified gene into genome of
organism. Once trans-gene is integrated, they will be
entailed upon offspring and produce corresponding
biological functions. Biologists classify the required
genes, clone them, and inject them into target species.
The key points are:
l Separate target gene or gene segments.
l Reorganize DNA ectogenically (out of the body). Put

foreign DNA segment into receiver body.
l Filter out the “good” DNA and clone.
l Clone target gene to acceptor body and expressed

gene to get the desired property.

3.2. The basic idea behind Genetic Modifying
Enlightened by the modern genetic modified technique

in bio-engineering, we proposed Genetic Modifying and
Gene Injection algorithms to control evolution direction.
It combines Nature selection and Human selection. It gets
excellent species in relative short evolution procedures.
However, we name our genetic modifying algorithm as
Trans-gene to differentiate it from the technique used in
bio-engineering. For special problem, the selection of
good genes and injection time is based on the evaluation
of fitness and under guidance of heuristic rules.

In the original GEP invented by C. Ferreira, the
evolution procedure is loose-controlled. Once the
evolution begins, the whole population is wild. Users
passively wait for the results produced by evolutions after
specified generations. The “good” gene accumulated by
many generations may be destroyed in one “bad” mutation.
The key ideas of Trans-gene are: (a) classify the “good”
genes, and store them in gene library; (b) inject “good”
genes into proper individuals at proper evolutional step to
quicken the process of evolution.

For example, let Attn = (1-x+x2/2-x3/6), (≈e-x). It is an
attenuation gene consisting of 20 basic symbols. It is
easily destroyed by a “bad” mutation. In our model, Attn
is in stored in Gene-lab as an “atomic”. It may be injected
into object when attenuation property is apperceived to

speed up the evolutionary process.

3.3. The key steps in GEP with Trans-gene
The kernel technique of GEP-with Trans-gene is the

injection of foreign gene segments; GEP algorithm can
not predict the target property. Foreign gene is dependent
on the evolutional process. The experience shows that,
after evolving enough generations, the “good” structures
appear in genes of excellent individuals. These genes can
be stored in a buffer for reproduction. To keep these good
structures, we proposed algorithms to separate and
decompose gene in [8], the key steps are as the name of
the following algorithms:
l Algorithm Get_sigle_Gene_from_chromosome

(chrom); output single_gene.
l Algorithm Get_sement_from_chromosome (single

_gene); by deletion some factor and terminal symbol
in single_gene, it decompose single_gene as some
Gene_sengment.

l Algorithm Single_Gene_Evolution(); Based on
previous steps, The chromosome with good genes is
selected and dispatched to separated population for
independent evolution to develop excellent gene.

l Algorithm Gene_Segment_Evolution(); Extract gene
segments from genes as individual dispatched to
separated population for independent evolution.

l Algorithm GGSE to Filter Gene for GSE and FGSGE
to Filter Gene for SGE...Filter good chromosome to
prepare evolution.

l Algorithm GEP-trans-gene ();
l Each segment got from previous evolution is

evaluated, selected and sent to independent
evolution.

3.4. The experiment on GEP with Trans-gene
Two experiments with different parameters are done on

GEP and Trans-GEP (TGEP) for 10 times respectively.
The detail results can be seen in [8]. The object function
is the famous Schaffer function f6 as following, where
-100 ≤ x i ≤ 100 (i = 1, 2)

()[]22
2

2
1

2
2

2
1

2

216
001.00.1

5.0sin
5.0),(

xx

xx
xxf

++

−+
+=

There are 1000 test records are synthesized by f 6
formula with random x1 and x2. To simulate the real
mining environment, no human intervene are given. In 10
times random initialized experiments, four results of
TGEP are better than the best result of GEP. The average
fitness of TGEP is 0.11 higher than the one of GEP. Fig. 1
gives the comparison of TGEP and traditional GEP.

Fig. 1. The evolution of GEP & TGEP for function f6

4. Overlapped Gene Expression Life-form
4.1. The features of overlapped gene expression

Compared with other evolutionary algorithms, the
Evolutionary Algorithm based on Overlapped Gene
Expression (EAOGE) has the following advantages:
l An individual consists of several genes. Gene

segments can be overlapped under certain
conditions.

l EAOGE is efficiency in space, since the segments
are overlapped.

l There is no need to restrict the content of a gene or a
chromosome. Both GP and GEP have to restrict the
formats of gene in some ways such as the type and
the length of gene head and tail in GEP. Experiments
show that under same condition, the velocity of
EAOGE is 2.8 to 9.7 times of GEP.

The capability of discovering higher-degree polynomial
function is high. Compared with GEP, EAOGE greatly
increases the success rate in polynomial function mining.

4.2. Definitions and encoding methods
Different from existing GEP, our EAOGE code does not

have head or tail concepts, and any position in the gene
can include the elements of F and T. Hence EAOGE code
has the simplicity as GA. On the other hand, like GEP
algorithm, EAOGE can be translated into a unique
corresponding expression according gene coding. The
translating process is as follows:
l Scan each element of gene in order.
l If the current symbol belongs to T, then let it be a

leaf-node in ET
l If the current symbol belongs to F, it is a non-leaf

node in ET, the number of its sub-trees equals the
number of the function parameters. Let the element
which is the directly succeeding of current symbol

-0.02
0

0.02
0.04
0.06
0.08
0.1
0.12
0.14
0.16
0.18

1 2 3 4 5 6 7 8 9 10
#Experiment

F
i
t
n
e
s
s

be the first root node of the sub-trees, the secondary
element be the root node of secondary sub-trees, and
the rest may be deduced by analogy. It meets the end
of a gene. The first element in T is a sub-tree
root-node.

In the viewpoint of code structure, EAOGE possesses
the simplicity of GA. It does not need to restrict the
elements in the gene; on the other hand, EAOGE can also
form expression tree to complete the mapping from
genotype to phenotype. Thus it makes a good foundation
to solve complicated polynomial function mining.

4.3. The research results on Overlapped Gene
Expression

Algorithm EAOGE simulates Nature Selection over
biome. It implements genetic operation, such as mutation,
transition recombination, etc; evolve populations, selects
excellent individual as solution to given problem. We
gave a series algorithms and theorems in [9]. By the
limitation of paper space, here give some important
results:
(a) Space theorem for Multi-Genes

Assume the number of parameters in the operator set is
2, m is the length of chromosome and k is the number of
genes. Then the maximal expression space of multi-gene
individual I in EAOGE algorithm, MAXm(DI), satisfies:

1
2

51
2

51
5

2)(
22

−

 −
−

 +
×=

++
k
m

k
m

Im kDMAX

(b) The Theorem on existence of equivalent gene-type

Assume H(x1, x2, …, xn) = np
n

pp xxx 21
21 , where x i is a

variant, P1, …, Pn is non-0 integer. Then there is a
genotype E of EAOGE algorithm, such that the expression
of E equals

inii p
n

p
k

i

p
n xxxxxxf 21

2
1

121),,,(∑
=

=

We gave four experiments in [9]. Here simply introduce
the first results. Consider discovery of function with two
arguments. We synthesize test data of 20 records by
formula Z=X5+3*X*Y, X and Y are in [-3, 3], M=10000,
Take gene length are 9~23 for EAORG and GEP. We run
EAORG and GEP 100 times. The average number of
generation, Max number of generation and minimum
number of generation are shown in Fig.2. The time
consumed is shown in Fig 3. The extended experiments
show that the speed for FAOGE is 2.8~9.7 times faster

than GEP. In the problem to discover function containing
high rank polynomials, WAOGE is much better than GEP.
The details can be seen in [9].

0

200

400

600

800

1000

1200

9 11 13 15 17 19 21 23

meoe_avg meoe_max meoe_min

Fig. 2. Comparison for different Gene Length in EAOGE

0

10

20

30

40

50

60

9 11 13 15 17 19 21 23

meoe_time gep_time

Fig. 3. Comparison of the time cost by EAOGE and GEP

5. The Backtracked GEP
5.1. Inspiration from atavism

When GEP evolutional process reaches specifi c
generations, the average fitness is high enough, the
diversity of population is small, the evolution may fall
into the trap of local peak and losses the chance to get
global optimization [8].This is so called prematurity like
that in life-form world. The atavism in life-form gives
solution inspiration. In the view point of modern genetics,
the reasons of atavism are: (a) some lost gene of ancestor
re-combined by crossbreed or mutation. (b) some gene of
ancestor is inactive by stop-protein. The stop-protein is
broken off by some causation and the gene actives again.
This shows that the evolution process is reversible. To
solve prematurity problem, we proposes Backtracked GEP,
It gives traditional GEP a chance to modify evolution
direction by backslide.

5.2. The key points in Backtracked GEP
The evolutional steps are along with the generation

number. A Backtracked Checkpoint Sequence (BCS) and a

stack are maintained by an algorithm.
l Check the maximal fitness at pre-specified check

point; compare it with the fitness at previous
checkpoint in stack. If the later fitness is higher,
then the evolution is valid, push the current
population in stack.

l Otherwise, the evolution got in wrong direction.
Quits by poping stack top, re-start evolution form
previous population

Since GEP searches in random style, in the sense of
probability, re-evolution does not repeat previous
evolution steps, hence daps from prematurety.

5.3. New concepts in Backtracked GEP
(1) Backtracked Checkpoint Sequence (BCS). It is a
pre-specified generation number to check whether a
backtracked step should be considered. Each BCS is with
corresponding fitness and stack node. In practice we
observed that the constringency speed is nonlinear. In the
earlier stage, the diversity in population is high, hence
constringency speed is high. At the later stage, the
diversity in population is low, hence constringency speed
is low.
(2) Geometric progressing Backtracked Checkpoint
Sequence (GPBCS) and accelerative increase backtracked
checkpoint Sequence (AIBCS).
(3) Degeneration factor α, a positive number, to control
backtrack. When backtrack from gi+1to gi , it makes new
population at gi as α*Pgi + (1 – α)*Pgi +1.
(4) Scalable backtrack. Especially, when Degeneration
facto α = 1, the evolution is backtracked GEP. If α = 0.5 it
is called semi-backtracked GEP, if α = 0 it degenerates to
traditional GEP

5.4. The experiments for Backtracked GEP
Two experiments are given in [9]. The Data for the first

Experiment is as that in [11]. C. Ferreira used it to verify
mining capability of GEP in the five dimensional spaces.
We used the target function produce 50 data as evolution
environment. Since the function is rather complex and
dimension is not low, we used Geometric Progressing
Backtracked Checkpoint Sequence (GPBCS). The fitness
threshold for success is 0.8. The comparison of traditional
GEP and Backtracked GEP is shown in Table 1.

Table 1. The success rate comparison (I)

 traditional GPBCS
number of records 100 100

success rate 40% 90%
The data for decode experiment is borrowed from [11].

It is relatively simple. We used accelerative increase
backtracked checkpoint sequence (AIBCS). The fitness
threshold for success was 0.84. The comparison of
traditional GEP and Backtracked GEP is shown in Table
2.

Table 2. The success rate comparison (II)

 traditional AIBCS
number of records 100 100

success rate 20% 100%
The experiments show that, with same evolution

generation, backtracked GEP can avoid prematurity and
gets global optimization much easier than traditional GEP.
Fig. 4 gives results in the second experiment. The
x-coordinate is data number, y-coordinate is values. Fig.4
shows that new algorithm get more accurate results (The
dashed line is traditional GEP).

Fig. 4. The accuracy comparison of GEP and Backtracked
GEP

6. Strategies for Population Diversities
As stated in Section 3, the population diversity is very

important for the quality of results. The initial population
needs to have as many different individuals as possible in
order to better explore the search space in the further
evolution [2]. The original GEP generates the initial
population randomly. It is simple but does not pay
attention to the diversity of the generated chromosomes.

To overcome the limitation, we propose strategies for
diversifying the initial population and adjusting the
mutation rate dynamically. The key ideas are as follows:

− Developing an algorithm to extract the open reading
frame (ORF) of a gene without parsing the
corresponding ET.

− Using the r-continuous-bits matching rule to evaluate
the similarity between chromosomes.

− Proposing a novel adaptive mutation rate strategy for
each chromosome in the evolution. Different
chromosomes may be assigned different mutation rates
according to their fitness values.

6.1. Improve initial population diversity
As mentioned above, the ORF is the valid part of a

gene and can be got by parsing ET from left to right and
from top to bottom. Moreover, a gene is the genotype of a
GEP individual. Thus, in our study we evaluate
population diversity from the aspect of genotype instead
of phenotype.

The main reasons for us to adopt this method are on the
following: (1) all the genetic operators are conducted on
the genotypes in GEP; (2) the genotypes are strings with
fixed length. It is easy to implement matching algorithm
on strings; and (3) the phenotypes are tree structures. It is
difficult to evaluate the similarity between two
phenotypes. The case will become more difficult when
taking the commutative operators into account.

It is common for GEP genes to have noncoding regions
downstream from the termination point. However, it is
unreasonable to consider these noncoding regions when
evaluating the similarities among genes, since they do not
interfere with the product of expression. Thus, we
measure the difference among different genes based on
their ORFs rather than the entire genotypes.

Although the conversion from an ET into an ORF can
be accomplished by recording the nodes from left to right
in each layer of the ET in a top-down fashion to form the
string, it is a time-consuming process. To deal with this
problem, we develop an algorithm to extract the ORF of a
gene without parsing the corresponding ET. The main idea
of the algorithm is based on the following facts: (1) the
start site is always the first position of a gene in GEP; (2)
a gene is mapped into an ET according to a wide-first
procedure, and (3) a branch of the ET stops growing when
the last node in this branch is a terminal.

Observation 1. For each function in the gene,
there are as many symbols as there are arguments to
that function downstream from it.

Based on Observation 1, we can extract the ORF from a
gene without mapping genotype to phenotype. Let the
variable length be the number of symbols at least belongs
to the ORF downstream from the scanning symbol. The
process begins with reading the first symbol in the gene
and assigning its arity to length. If the length does not
equal to 0, the process continues with reading the next

symbol. Since the process has read another symbol, the
value of length should minus 1. If the second symbol is
also a function, we add its arity to length, else do nothing.
The process is repeated until the value of length equals to
0. Figure 5 shows an instance of extracting the ORF from
“+a*babab”.

+a*-babab
step 0 1 2 3 4 5 6 7

length 1 2 1 2 3 2 1 0
input symbol + a * - b a b

Fig. 5. An example of extracting an ORF

6.2. The strategy of adaptive mutation
Although there are several genetic operators to create

the necessary genetic diversification that allows evolution
in the long run, mutation is the single most efficient
genetic operator to modify individuals in GEP [10, 12].
Mutations can occur anywhere in the chromosome.
However, a particularity of this operator is that some
integrity rules must be obeyed to avoid syntactically
invalid individuals. In the head of a gene, both terminals
and functions are permitted (except for the first position,
where only functions are allowed); in the tails terminals
can only change into terminals.

If a function is mutated into a terminal or vice versa, or
a function of one argument is mutated into a function of
more arguments or vice versa, the ET is modified
drastically [1]. Therefore, the value of mutation rate
is important for evolving the optimal solution in a
running. Even the fitness of individuals (candidate
solutions) varies a lot; each of them has the same
probability to survive. In other words, in original
GEP, the modification probability for every
individual is equal and no individual has more
viability than the others.

However, the common sense tells that the fitter the
being is, the higher survival probability it has. Thus, the
individual with higher fitness value should be assigned
lower mutation rate. In this section, we discuss an
adaptive mutation rate strategy, in which the fitness of
each individual is considered. Given individual I, let pm
denote the mutation rate of I. That is,

pm = (1 – fitVal / fitMax)*(pm_max – pm_min)+pm_min

where fitVal denotes the fitness value of I, fitMax
denotes the fitness value when individual is the best
solution, pm_max is the maximum mutation rate for I and
pm_min is the minimum mutation rate for I. Both pm_max
and pm_min are assigned by user before running. And they
satisfy: 1.0 ≥ pm_max > pm_min ≥ 0.0.

 From above equation, the mutation rate for each
individual can vary from pm_max to pm_min in evolution
according to the value of fitness. The fitter the individual
is, the lower the mutation rate is. Thus, the opportunity
for losing individuals with higher fitness in population
decreases, while individuals with lower fitness are more
likely to undergo mutation operator, which can modify
individuals drastically. If pm_max equals pm_min, the
mutation rate remains invariable as in original GEP.

 Theoretically the thought of adaptive mutation rate
can be applied to other genetic operators in the same way.
However, we do not apply this strategy to transposition
and recombination. The reasons are stated as follows:
a) As stated in [10], although other genetic operators can

be and are regularly used in GEP both for practical and
theoretical reasons, mutation has a tremendous creative
power and, indeed, this operator alone is more than
sufficient to evolve solutions to virtually all problems.

b) In original GEP algorithm, individuals are selected
according to their fitness by the well-known
roulette-wheel selection with elitism and modified by
genetic operators, which are performed in an orderly
fashion, starting with replication and continuing with
mutation, transposition, and recombination. Thus, while
calculating mutation rates, fitness can be got from
previous step. However, if we apply the thought of
adaptive mutation to other operators, fitness of
individuals should be evaluated once more. As
individuals have been modified by other geneti c
operators implemented previously.

c) C. Ferreira studied the transforming power of mutation,
transposition, and recombination in [10]. She pointed
out that the finger-shaped plot observed for mutation,
is very different from plots obtained both for
transposition and recombination. Thereby the adaptive
strategy is not suit for transposition and recombination.
Based on above reasons, we just apply the adaptive

strategy to mutation operator instead of all genetic
operators.

6.3. Performance evaluation
We made a similar experiment as C. Ferreira did in [10].

The test function, y = a4 + a3 + a2 + a, was relatively
simple, as it can be exactly solved using relatively small
populations and relatively short evolutionary times. A set
of 10 random fitness cases chosen from the interval [-10,
10] was used. The training data set remained the same for
each running in order to minimize any evolution
difference caused by training data.

To demonstrate the effectiveness of the strategy of
initial population diversity, we implemented the original
GEP algorithm (O-GEP) as well as the GEP algorithm
with the new strategy (I-GEP). Due to the stochastic
nature of GEP, the success rate (ps) and the number of
generations necessary to find the best solution (genbest) of
each algorithm were evaluated 100 independent runs and
the average values were reported. The similarity threshold
(ts) was assigned 7 in this problem. The results of this
experiment are shown in Table 3.

Table 3. Results of O-GEP and I-GEP for 100 runs of the
synthetic problem

 O-GEP I-GEP
ps 96% 99%

genbest 21.8 16.6
Next, we carried out another performance compare

between the GEP algorithm with the strategy of adaptive
mutation rate and the original GEP algorithm. For the
strategy of adaptive mutation rate, pm_max and pm_min
were assigned as 0.1 and 0.044 respectively. The original
GEP algorithm was evolved in the case of mutation rate
equals 0.1 and 0.044 respectively in this experiment. In
order to observe the effects of the strategy fairly, only
mutation operator of all genetic operators was used in the
algorithms. So we denote them as A-GEP’ and O-GEP’
respectively. In addition, we added the strategy of initial
population diversity to A-GEP’ so as to observe the effect
of the proposed strategies implemented simultaneously.
This algorithm is denoted as A&I-GEP’. The results of
them are shown in Table 4.

Table 4. Results of O-GEP’, I-GEP’ and A&I-GEP’ for
100 runs of the synthetic problem

 O-GEP’R m=

0 .044

O-GEP’R m=

0 .1
I-GEP’ A&I-GEP’

ps 92% 96% 97% 97%
genbest 34.6 29.7 24.8 23.1

As shown in Table 3 and Table 4, the performance of
GEP algorithm can be enhanced remarkably when using
our proposed strategies.

7. Conclusion
GEP is a powerful function mining tool with simple

coding and wide application area. In the past year, we
developed some strategies to make traditional GEP more
powerful, i.e. (a) Genetic Modifying Algorithm in GEP
(Trans-gene). By injection gene segment, it guides the
evolution direction, controls knowledge discover process.

(b) Overlapped gene expression. It borrows the idea of
overlap gene expression from biological study, introduces
overlapped gene expression, save space for gene
expression. (c) Backtracked GEP. It is enlightened from
atavism in biology. We propose the backtracking GEP
algorithms, designed Geometric Proportion Increased
Checkpoint Sequence and Accelerated Increased
Checkpoint Sequence to restrict the backtracking process.
(d) Population diversity strategy and adaptive mutation
rate strategy for improving the efficiency of GEP in this
paper. (e) Extensive experiments show that these
strategies respectively boost the performance of GEP by
one or two magnitudes.

For future work, we plan to apply our strategies to
real-life applications. Therefore, more work such as
determining proper parameters for GEP and our methods,
will be considered.

References
[1] C. Ferreira. Gene Expression Programming: A New

Adaptive Algorithm for Solving Problems. Complex
Systems, 2001, 13(2): 87-12

[2] C. Ferreira: Gene Expression Programming:
Mathematical Modeling by an Artificial Intelligence.
Angra do Heroismo, Portugal, 2002.

[3] C. Ferreira: Function finding and a creation of
numerical constants in gene expression programming,
In: Advances in Soft Computing, Engineering Design
and Manufacturing. Berlin: Springer-Verlag (2003)
257–266.

[4] Chi Zhou, Weimin Xiao, Thomas M. Tirpak and
Peter C. Nelson: Evolution Accurate and Compact
Classification Rules with Gene Expression
Programming. IEEE Transactions on Evolutionar y
Computation. Vol. 7, 6 (2003) 519–531.

[5] Zuo J, Tang CJ and Zhang TQ: Mining predicate
association rule by gene expression programming.
In: Proc of the 3rd Int’l Conf for Web Information
Age 2002(WAIM02). LNCS 2419. Berlin :
Springer-Verlag (2002) 92–103

[6] Zuo J, Tang CJ, Li C, et al: Time Series Prediction
based on Gene Expression Programming. In: Proc of
the 5th Int’l Conf for Web Information Age 2004
(WAIM04). LNCS 3129. Berlin: Springer-Verlag
(2004) 55–64

[7] Duan L, Tang CJ, Zuo J, et al : An Anti-noise Method
for Function Mining Based on GEP. Chinese Journal
of Computer Research and Development (2004)
41(10): 1684–1689

[8] Jing Peng, Chang-jie Tang, Jing Zhang, Chang-an
Yuan: Evolutionary Algorithm Based on Overlapped
Gene Expression, In: Proc of CNC2005. LNCS 3612.
Berlin: Springer-Verlag (2005) 194–204

[9] Zhong YX, Tang CJ, Chen Y, Duan L and Wei DG:
Improve KDD Efficiency of Gene Expression
Programming by Backtracking Strategy, Chinese
Science Paper Online. http://www.paper.edu.cn No.
200505-193

[10] C. Ferreira: Mutation, Transposition, and
recombination: An Analysis of the Evolutionar y
Dynamics. 4th Int’l Workshop on Frontiers in
Evolutionary Algorithms, Research Triangle Park,
North Carolina, USA (2002) 614–617

[11] http://www.amstat.org/publications/jse/jse_data_arch
ive.htm

[12] Heitor S. Lopes and Wagner R. Weinert: EGIPSYS:
An Enhanced Gene Expression Programming
Approach for Symbolic Regression Problems.
International Journal of Applied Mathematics and
Computer Science. Vol. 14, 3(2004): 375–384.

