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Abstract  This paper introduces the technologies to improve the performance of function mining by Gene Expression 
Programming (GEP) developed in Sichuan University last year. The main results include: (a) Genetic Modifying Algorithm 
(Trans-gene). By injection gene segment into genome, it guides the evolutional direction and speeds up knowledge discovery 
process. (b) Overlapped gene expression. Borrowing the idea of overlap gene expression from biological study, it applies 
overlapped gene expression, saves space for gene expression. (c) Backtrack-able GEP. Enlightened by atavism in biology, it 
proposes backtrack-able GEP algorithms, designing Geometric Proportion Increased Checkpoint Sequence and Accelerated 
Increased Checkpoint Sequence to restrict the backtrack process. (d) Adaptive Mutation. The mutation rate for each individual 
can vary in evolution according to the value of fitness. Experiments show that these techniques boost the performance of GEP 
by one or two magnitudes, respectively. 
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1. Introduction 
Gene Expression Programming (GEP) [1] is a new 

member in the family of genetic computing. It combines  
advantages in both Genetic Algorithms (GAs) and Genetic 
Programming (GP). In GEP, candidate solutions are called  
chromosomes and represented as linear strings with  
fixed-length, and can be easily expressed as expression 
trees (ETs). The GEP chromosome and its coding style are  
designed so perfectly that chromosomes always alive  
under various genetic operations, hence always results in  
a valid expression tree. Based on the genetic operators  
and the separation of genotype and phenotype, GEP is 
endowed with more flexibility and power of exploring the  
entire solution space compared with traditional GAs and 
GP [2]. GEP offers great potentiality to solve complex 
modeling and optimization problems and it has been used 
to solve a large variety of problems efficiently, including 
symbolic regression, function finding, classification, time 
series analysis, logic synthesis and cellular automata, etc.  
[3, 4, 5].  

This paper gives a survey to the new techniques for 
GEP developed in Sichuan University in 2005. It  focuses  
on the key idea of the strategies to improve the  
performance in discovering function by Gene Expression 
Programming, i.e. trans-gene, overlapped expression and 
backtracking evolution and adaptive mutation. 

 

2. The Basic Concepts and Terminologies 
The main process of GEP is similar to its predecessors,  

GAs and GP. The essential difference is: in GAs the 
individuals are symbolic strings of fixed length; in GP the 
individuals are non-linear entities of different sizes and 
shapes; and in GEP the individuals are also non-linear  
entities of different sizes and shapes, but these complex 
entities are encoded as simple strings of fixed length. In  
GEP, the expression trees consisting of the genetic 
information encoded in the chromosomes.  The  
chromosome consists of a linear, symbolic string of fixed 
length composed of one or more genes. GEP genes are  
composed of a head and a tail. The head contains symbols  
that represent both functions and terminals, whereas the  
tail contains only terminals. For each problem, the length  
of the head h is chosen, whereas the length of the tail t is 
a function of h and the number of arguments of the  
function with more arguments n, and is evaluated by the  
equation: t = h (n – 1) + 1. Consider a gene for which the  
set of functions F = {+, -, *, /}. In this case the maximum 
arity of F is 2, then n = 2.  

Through parsing the expression tree from left to right 
and from top to bottom, the valid part of GEP genes can 
be got. Thanks to the structural organization of GEP 
genes, any modification made in the chromosome, no 



 

 

matter how profound, always results in a valid expression 
tree. So all programs evolved by GEP are syntactically 
correct. Based on the principle of natural selection and 
“survival for the fittest”, GEP operates iteratively 
evolving a population of chromosomes, encoding 
candidate solutions, through genetic operators, such as 
selection, crossover, and mutation, to find an optimum 
solution. 

Other than C. Ferreira’s researches [1,2,3], several  
studies based on GEP have been performed, such as 
mining predicate association rule by GEP [5], predicting 
time series based on GEP [6], and mining functions from 
data set containing noise [7]. 

GEP algorithm begins with the random generation of 
the chromosomes of the initial population. Then the 
chromosomes are expressed and the fitness of each 
individual is evaluated. The individuals are then 
according to fitness to reproduce with modification,  
leaving progeny with new traits. The individuals of this  
new generation are, in their turn, subjected to the same 
developmental process: expression of the genomes,  
confrontation of the selection environment, and 
reproduction with modification. If a solution of satisfied  
quality is found, or a predetermined number of 
generations is reached, the evolution stops and the 
best-so-far solution is returned. 

According to both fitness and the selection method, 
individuals are selected to reproduce with modification,  
creating the necessary genetic diversity allowing for  
adaptation in the long run. In nature, several  
modifications, like mutation, deletion, and insertion, are 
introduced during the replication of the genomes. In basic 
GEP algorithm, the genetic operators perform in an  
orderly fashion, starting with replication and continuing 
with mutation, transposition, and recombination. 

The mutation operator aims to introduce random 
modifications into a given chromosome. Of the operators  
with intrinsic modification power, mutation is the most  
efficient [1]. With mutation, populations of individuals  
adapt very efficiently,  allowing the evolution of good 
solutions to virtually all problems. In GEP, there are three 
transposition operators: insertion sequence (IS), root IS 
(RIS) and gene transposition. The transposable elements  
of GEP are fragments of the genome that can be activated  
and jump to another place in the chromosome. 
Furthermore, in GEP there are three kinds of 
recombination: one-point recombination, two-point  
recombination and gene recombination. In all types of 

recombination, two chromosomes are randomly chosen 
and paired to exchange some material between them, 
resulting in the formation of two new individuals. The  
implementations of mutation, transposition and 
recombination are detailed in [1, 2]. 

 

3. The GEP with Genetic Modifying 
3.1.  The genetic modifying in Bio-engineering 

The genetic modified technique in Bio-engineering 
aims at creating new species or fastening evolution by 
injection the classified or modified gene into genome of 
organism. Once trans-gene is integrated, they will be 
entailed upon offspring and produce corresponding 
biological functions. Biologists classify the required  
genes, clone them, and inject them into target species.  
The key points are: 
l Separate target gene or gene segments. 
l Reorganize DNA ectogenically (out of the body). Put 

foreign DNA segment into receiver body. 
l Filter out the “good” DNA and clone. 
l Clone target gene to acceptor body and expressed 

gene to get the desired property. 

3.2.  The basic idea behind Genetic Modifying 
Enlightened by the modern genetic modified technique 

in bio-engineering, we proposed Genetic Modifying and 
Gene Injection algorithms to control evolution direction.  
It combines Nature selection  and Human selection. It gets  
excellent species in relative short evolution procedures.  
However, we name our genetic modifying algorithm as  
Trans-gene to differentiate it from the technique used in 
bio-engineering. For special problem, the selection of 
good genes and injection time is based on the evaluation 
of fitness and under guidance of heuristic rules. 

In the original GEP invented by C. Ferreira, the 
evolution procedure is loose-controlled. Once the  
evolution begins, the whole population is wild. Users 
passively wait for the results produced by evolutions after  
specified generations. The “good” gene accumulated by 
many generations may be destroyed in one “bad” mutation.  
The key ideas of Trans-gene are: (a) classify the “good”  
genes, and store them in gene library; (b) inject “good”  
genes into proper individuals at proper evolutional step to 
quicken the process of evolution. 

For example, let Attn = (1-x+x2/2-x3/6 ), (≈e-x). It  is an 
attenuation gene consisting of 20 basic symbols. It is 
easily destroyed by a “bad” mutation.  In our model, Attn  
is in stored in Gene-lab as an “atomic”. It may be injected  
into object when attenuation property is apperceived to 



 

 

speed up the evolutionary process. 

3.3.  The key steps in GEP with Trans-gene 
The kernel technique of GEP-with Trans-gene is the 

injection of foreign gene segments; GEP algorithm can 
not predict the target property. Foreign gene is dependent  
on the evolutional process. The experience shows that,  
after evolving enough generations, the “good” structures  
appear in genes of excellent individuals. These genes can 
be stored in a buffer for reproduction. To keep these good 
structures, we proposed algorithms to separate and 
decompose gene in [8], the key steps are as the name of 
the following algorithms: 
l Algorithm Get_sigle_Gene_from_chromosome 

(chrom); output single_gene. 
l Algorithm Get_sement_from_chromosome (single 

_gene); by deletion some factor and terminal symbol 
in single_gene, it decompose single_gene as some 
Gene_sengment. 

l Algorithm Single_Gene_Evolution(); Based on 
previous steps, The chromosome with good genes is 
selected and dispatched to separated population for 
independent evolution to develop excellent gene. 

l Algorithm Gene_Segment_Evolution(); Extract gene 
segments from genes as individual dispatched to 
separated population for independent evolution. 

l Algorithm GGSE to Filter Gene for GSE and FGSGE 
to Filter Gene for SGE...Filter good chromosome to 
prepare evolution. 

l Algorithm GEP-trans-gene (); 
l Each segment got from previous evolution is 

evaluated, selected and sent to independent 
evolution. 

3.4.  The experiment on GEP with Trans-gene 
Two experiments with different parameters are done on 

GEP and Trans-GEP (TGEP) for 10 times respectively.  
The detail results can be seen in [8]. The object function 
is the famous Schaffer function f6 as following, where  
-100 ≤ x i  ≤ 100 (i = 1, 2) 
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There are 1000 test records are synthesized by f 6 
formula with random x1 and x2. To simulate the real  
mining environment, no human intervene are given. In 10 
times random initialized experiments, four results of 
TGEP are better than the best result of GEP. The average  
fitness of TGEP is 0.11 higher than the one of GEP. Fig. 1 
gives the comparison of TGEP and traditional GEP.  

 

Fig. 1. The evolution of GEP & TGEP for function f6 
 

4. Overlapped Gene Expression Life-form 
4.1.  The features of overlapped gene expression 

Compared with other evolutionary algorithms, the 
Evolutionary Algorithm based on Overlapped Gene  
Expression (EAOGE) has the following advantages: 
l An individual consists of several genes. Gene 

segments can be overlapped under certain 
conditions. 

l EAOGE is efficiency in space, since the segments 
are overlapped. 

l There is no need to restrict the content of a gene or a 
chromosome. Both GP and GEP have to restrict the 
formats of gene in some ways such as the type and 
the length of gene head and tail in GEP. Experiments 
show that under same condition, the velocity of 
EAOGE is 2.8 to 9.7 times of GEP. 

The capability of discovering higher-degree polynomial 
function is high. Compared with GEP, EAOGE greatly 
increases the success rate in polynomial function mining.  

4.2.  Definitions and encoding methods 
Different from existing GEP, our EAOGE code does not 

have head or tail concepts, and any position in the gene  
can include the elements of F and T. Hence EAOGE code  
has the simplicity as GA. On the other hand, like GEP 
algorithm, EAOGE can be translated into a unique  
corresponding expression according gene coding.  The  
translating process is as follows: 
l Scan each element of gene in order. 
l If the current symbol belongs to T, then let it be a 

leaf-node in ET 
l If the current symbol belongs to F, it is a non-leaf 

node in ET, the number of its sub-trees equals the 
number of the function parameters. Let the element 
which is the directly succeeding of current symbol 
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be the first root node of the sub-trees, the secondary 
element be the root node of secondary sub-trees, and 
the rest may be deduced by analogy. It meets the end 
of a gene. The first element in T is a sub-tree 
root-node. 

In the viewpoint of code structure, EAOGE possesses 
the simplicity of GA. It does not need to restrict the  
elements in the gene; on the other hand, EAOGE can also 
form expression tree to complete the mapping from 
genotype to phenotype. Thus it makes a good foundation 
to solve complicated polynomial function mining. 

4.3.  The research results on Overlapped Gene 
Expression 

Algorithm EAOGE simulates Nature Selection over 
biome. It implements genetic operation, such as mutation,  
transition recombination, etc; evolve populations, selects  
excellent individual as solution to given problem. We 
gave a series algorithms and theorems in [9]. By the  
limitation of paper space, here give some important  
results: 
(a) Space theorem for Multi-Genes 

Assume the number of parameters in the operator set is 
2, m is the length of chromosome and k is the number of 
genes. Then the maximal expression space of multi-gene  
individual I in EAOGE algorithm, MAXm(DI), satisfies: 
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(b) The Theorem on existence of equivalent gene-type 

Assume H(x1, x2, …, xn) = np
n

pp xxx 21
21 , where x i  is a 

variant, P1, …, Pn  is non-0 integer. Then there is a  
genotype E of EAOGE algorithm, such that the expression 
of E equals 
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We gave four experiments in [9]. Here simply introduce 
the first results. Consider discovery of function with two 
arguments. We synthesize test data of 20 records by 
formula Z=X5+3*X*Y, X and Y are in [-3, 3], M=10000, 
Take gene length are 9~23 for EAORG and GEP. We run 
EAORG and GEP 100 times.  The average number of 
generation, Max number of generation and minimum 
number of generation are shown in Fig.2.  The time 
consumed is shown in Fig 3. The extended experiments  
show that the speed for FAOGE is 2.8~9.7 times faster  

than GEP. In the problem to discover function containing 
high rank polynomials, WAOGE is much better than GEP. 
The details can be seen in [9]. 
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Fig. 2. Comparison for different Gene Length in EAOGE 
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Fig. 3. Comparison of the time cost by EAOGE and GEP 
 

5. The Backtracked GEP 
5.1.  Inspiration from atavism 

When GEP evolutional process reaches specifi c 
generations, the average fitness is high enough, the 
diversity of population is small, the evolution may fall  
into the trap of local peak and losses the chance to get  
global optimization [8].This is so called prematurity like  
that in life-form world. The atavism in life-form gives  
solution inspiration. In the view point of modern genetics,  
the reasons of atavism are: (a) some lost gene of ancestor  
re-combined by crossbreed or mutation. (b) some gene of 
ancestor is inactive by stop-protein. The stop-protein is  
broken off by some causation and the gene actives again.  
This shows that the evolution process is reversible. To 
solve prematurity problem, we proposes Backtracked GEP,  
It gives traditional GEP a chance to modify evolution 
direction by backslide. 

5.2.  The key points in Backtracked GEP 
The evolutional steps are along with the generation 

number. A Backtracked Checkpoint Sequence (BCS) and a 



 

 

stack are maintained by an algorithm. 
l Check the maximal fitness at pre-specified check 

point; compare it with the fitness at previous 
checkpoint in stack. If the later fitness is higher,  
then the evolution is valid, push the current 
population in stack. 

l Otherwise, the evolution got in wrong direction.  
Quits by poping stack top, re-start evolution form  
previous population 

Since GEP searches in random style, in the sense of 
probability, re-evolution does not repeat previous  
evolution steps, hence daps from prematurety. 

5.3.  New concepts in Backtracked GEP 
(1) Backtracked Checkpoint Sequence (BCS). It is a 
pre-specified generation number to check whether a  
backtracked step should be considered. Each BCS is with 
corresponding fitness and stack node. In practice we 
observed that the constringency speed is nonlinear. In the  
earlier stage, the diversity in population is high, hence  
constringency speed is high. At the later stage, the  
diversity in population is low, hence constringency speed 
is low. 
(2) Geometric progressing Backtracked Checkpoint  
Sequence (GPBCS) and accelerative increase backtracked 
checkpoint Sequence (AIBCS). 
(3) Degeneration factor α, a positive number, to control  
backtrack. When backtrack from gi+1to gi , it makes new 
population at gi  as α*Pgi  + (1 – α)*Pgi +1. 
(4) Scalable backtrack. Especially, when Degeneration 
facto α = 1, the evolution is backtracked GEP. If α = 0.5 it  
is called semi-backtracked GEP, if α = 0 it degenerates to 
traditional GEP 

5.4.  The experiments for Backtracked GEP 
Two experiments are given in [9]. The Data for the first  

Experiment is as that in [11]. C. Ferreira used it to verify 
mining capability of GEP in the five dimensional spaces.  
We used the target function produce 50 data as evolution 
environment. Since the function is rather complex and 
dimension is not low, we used Geometric Progressing 
Backtracked Checkpoint Sequence (GPBCS).  The fitness  
threshold for success is 0.8. The comparison of traditional  
GEP and Backtracked GEP is shown in Table 1. 

Table 1. The success rate comparison (I) 

 traditional GPBCS 
number of records 100 100 

success rate  40% 90% 
The data for decode experiment is borrowed from [11].  

It is relatively simple. We used accelerative increase 
backtracked checkpoint sequence (AIBCS). The fitness  
threshold for success was 0.84.  The comparison of 
traditional GEP and Backtracked GEP is shown in Table  
2. 

Table 2. The success rate comparison (II) 

 traditional AIBCS 
number of records 100 100 

success rate  20% 100% 
The experiments show that, with same evolution 

generation, backtracked GEP can avoid prematurity and 
gets global optimization much easier than traditional GEP. 
Fig. 4 gives results in the second experiment.  The  
x-coordinate is data number, y-coordinate is values. Fig.4  
shows that new algorithm get more accurate results (The  
dashed line is traditional GEP). 

 
Fig. 4. The accuracy comparison of GEP and Backtracked 
GEP 

 

6. Strategies for Population Diversities 
As stated in Section 3, the population diversity is very 

important for the quality of results. The initial population 
needs to have as many different individuals as possible in  
order to better explore the search space in the further  
evolution [2]. The original GEP generates the initial  
population randomly. It is simple but does not pay 
attention to the diversity of the generated chromosomes. 

To overcome the limitation, we propose strategies for 
diversifying the initial population and adjusting the  
mutation rate dynamically. The key ideas are as follows: 

− Developing an algorithm to extract the open reading 
frame (ORF) of a gene without parsing the 
corresponding ET. 

− Using the r-continuous-bits matching rule to evaluate 
the similarity between chromosomes. 



 

 

− Proposing a novel adaptive mutation rate strategy for 
each chromosome in the evolution. Different 
chromosomes may be assigned different mutation rates 
according to their fitness values. 

6.1.  Improve initial population diversity 
As mentioned above, the ORF is the valid part of a 

gene and can be got by parsing ET from left to right and 
from top to bottom. Moreover, a gene is the genotype of a 
GEP individual. Thus, in our study we evaluate  
population diversity from the aspect of genotype instead 
of phenotype.  

The main reasons for us to adopt this method are on the 
following: (1) all the genetic operators are conducted on 
the genotypes in GEP; (2) the genotypes are strings with  
fixed length. It is easy to implement matching algorithm 
on strings; and (3) the phenotypes are tree structures. It is 
difficult to evaluate the similarity between two 
phenotypes.  The case will become more difficult when 
taking the commutative operators into account. 

It is common for GEP genes to have noncoding regions 
downstream from the termination point. However, it is 
unreasonable to consider these noncoding regions when 
evaluating the similarities among genes, since they do not  
interfere with the product of expression. Thus, we 
measure the difference among different genes based on 
their ORFs rather than the entire genotypes. 

Although the conversion from an ET into an ORF can 
be accomplished by recording the nodes from left to right  
in each layer of the ET in a top-down fashion to form the  
string, it is a time-consuming process. To deal with this  
problem, we develop an algorithm to extract the ORF of a  
gene without parsing the corresponding ET. The main idea  
of the algorithm is based on the following facts: (1) the  
start site is always the first position of a gene in GEP; (2) 
a gene is mapped into an ET according to a wide-first  
procedure, and (3) a branch of the ET stops growing when 
the last node in this branch is a terminal. 

Observation 1. For each function in the gene, 
there are as many symbols as there are arguments to 
that function downstream from it. 

Based on Observation 1, we can extract  the ORF from a 
gene without mapping genotype to phenotype. Let the 
variable length be the number of symbols at least belongs  
to the ORF downstream from the scanning symbol. The  
process begins with reading the first symbol in the gene  
and assigning its arity to length. If the length does not  
equal to 0, the process continues with reading the next 

symbol. Since the process has read another symbol, the  
value of length  should minus 1. If the second symbol is  
also a function, we add its arity to length, else do nothing.  
The process is repeated until the value of length equals to 
0. Figure 5 shows an instance of extracting the ORF from 
“+a*babab”. 

+a*-babab
step                  0     1     2     3     4     5     6     7  

length                1     2     1     2     3     2     1     0
input symbol    +     a     *   - b     a     b  

Fig. 5. An example of extracting an ORF 

6.2.  The strategy of adaptive mutation 
Although there are several genetic operators to create 

the necessary genetic diversification that allows evolution 
in the long run, mutation is the single most efficient  
genetic operator to modify individuals in GEP [10, 12].  
Mutations can occur anywhere in the chromosome. 
However, a particularity of this operator is that some 
integrity rules must be obeyed to avoid syntactically 
invalid individuals. In the head of a gene, both terminals  
and functions are permitted (except for the first position,  
where only functions are allowed); in the tails terminals  
can only change into terminals.  

If a function is mutated into a terminal or vice versa, or 
a function of one argument is mutated into a function of 
more arguments or vice versa, the ET is modified 
drastically [1]. Therefore, the value of mutation rate 
is important for evolving the optimal solution in a 
running. Even the fitness of individuals (candidate 
solutions) varies a lot; each of them has the same 
probability to survive. In other words, in original 
GEP, the modification probability for every 
individual is equal and no individual has more 
viability than the others. 

However, the common sense tells that the fitter the 
being is, the higher survival probability it has. Thus, the  
individual with higher fitness value should be assigned 
lower mutation rate. In this section, we discuss an  
adaptive mutation rate strategy, in which the fitness of 
each individual is considered. Given individual I, let pm 
denote the mutation rate of I. That is, 

pm = (1 – fitVal / fitMax)*(pm_max – pm_min)+pm_min 

where fitVal denotes the fitness value of I, fitMax 
denotes the fitness value when individual is the best 
solution, pm_max is the maximum mutation rate for I and 
pm_min is the minimum mutation rate for I. Both pm_max  
and pm_min  are assigned by user before running. And they 
satisfy: 1.0 ≥ pm_max > pm_min ≥ 0.0. 



 

 

  From above equation, the mutation rate for each 
individual can vary from pm_max to pm_min in evolution 
according to the value of fitness.  The fitter the individual  
is, the lower the mutation rate is. Thus, the opportunity 
for losing individuals with higher fitness in population 
decreases, while individuals with lower fitness are more  
likely to undergo mutation operator, which can modify 
individuals drastically. If pm_max equals pm_min, the 
mutation rate remains invariable as in original GEP.  

  Theoretically the thought of adaptive mutation rate 
can be applied to other genetic operators in the same way.  
However, we do not apply this strategy to transposition  
and recombination. The reasons are stated as follows: 
a) As stated in [10], although other genetic operators can 

be and are regularly used in GEP both for practical and 
theoretical reasons, mutation has a tremendous creative 
power and, indeed, this operator alone is more than 
sufficient to evolve solutions to virtually all problems. 

b) In original GEP algorithm, individuals are selected  
according to their fitness by the well-known 
roulette-wheel selection with elitism and modified by 
genetic operators, which are performed in an orderly 
fashion, starting with replication and continuing with 
mutation, transposition, and recombination. Thus, while 
calculating mutation rates, fitness can be got from 
previous step.  However, if we apply the thought of 
adaptive mutation to other operators, fitness of 
individuals should be evaluated once more. As 
individuals have been modified by other geneti c 
operators implemented previously. 

c) C. Ferreira studied the transforming power of mutation,  
transposition, and recombination in [10]. She pointed 
out that the finger-shaped plot observed for mutation,  
is very different from plots obtained both for 
transposition and recombination. Thereby the adaptive 
strategy is not suit for transposition and recombination.  
Based on above reasons, we just apply the adaptive 

strategy to mutation operator instead of all genetic 
operators. 

6.3.  Performance evaluation 
We made a similar experiment as C. Ferreira did in [10].  

The test function, y = a4 + a3 + a2 + a, was relatively 
simple, as it can be exactly solved using relatively small  
populations and relatively short evolutionary times.  A set  
of 10 random fitness cases chosen from the interval [-10,  
10] was used. The training data set remained the same for  
each running in order to minimize any evolution 
difference caused by training data. 

To demonstrate the effectiveness of the strategy of 
initial population diversity, we implemented the original  
GEP algorithm (O-GEP) as well as the GEP algorithm 
with the new strategy (I-GEP). Due to the stochastic 
nature of GEP, the success rate (ps) and the number of 
generations necessary to find the best solution (genbest) of 
each algorithm were evaluated 100 independent runs and 
the average values were reported. The similarity threshold  
(ts) was assigned 7 in this problem. The results of this 
experiment are shown in Table 3. 

Table 3. Results of O-GEP and I-GEP for 100 runs of the 
synthetic problem  

 O-GEP I-GEP 
ps  96% 99% 

genbest  21.8 16.6 
Next, we carried out another performance compare 

between the GEP algorithm with the strategy of adaptive  
mutation rate and the original GEP algorithm. For the  
strategy of adaptive mutation rate, pm_max and pm_min  
were assigned as 0.1 and 0.044 respectively.  The original  
GEP algorithm was evolved in the case of mutation rate  
equals 0.1 and 0.044 respectively in this experiment. In  
order to observe the effects of the strategy fairly, only 
mutation operator of all genetic operators was used in the 
algorithms. So we denote them as A-GEP’ and O-GEP’ 
respectively. In addition, we added the strategy of initial  
population diversity to A-GEP’ so as to observe the effect  
of the proposed strategies implemented simultaneously.  
This algorithm is denoted as A&I-GEP’. The results of 
them are shown in Table 4. 

Table 4. Results of O-GEP’, I-GEP’ and A&I-GEP’ for 
100 runs of the synthetic problem  

 O-GEP’R m=

0 .044  

O-GEP’R m=

0 .1  
I-GEP’  A&I-GEP’  

ps  92% 96% 97% 97% 
genbest   34.6 29.7 24.8 23.1 

As shown in Table 3 and Table 4, the performance of 
GEP algorithm can be enhanced remarkably when using 
our proposed strategies. 

 

7. Conclusion 
GEP is a powerful function mining tool with simple 

coding and wide application area. In the past year, we  
developed some strategies to make traditional GEP more  
powerful, i.e. (a) Genetic Modifying Algorithm in GEP 
(Trans-gene). By injection gene segment, it guides the  
evolution direction, controls knowledge discover process.  



 

 

(b) Overlapped gene expression. It borrows the idea of 
overlap gene expression from biological study, introduces  
overlapped gene expression, save space for gene  
expression. (c) Backtracked GEP. It is enlightened from 
atavism in biology. We propose the backtracking GEP 
algorithms, designed Geometric Proportion Increased 
Checkpoint Sequence and Accelerated Increased 
Checkpoint Sequence to restrict the backtracking process.  
(d) Population diversity strategy and adaptive mutation 
rate strategy for improving the efficiency of GEP in this  
paper. (e) Extensive experiments show that these  
strategies respectively boost the performance of GEP by 
one or two magnitudes. 

For future work, we plan to apply our strategies to 
real-life applications. Therefore, more work such as  
determining proper parameters for GEP and our methods,  
will be considered. 
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