

RecipeCrawler: Collecting Recipe Data from WWW Incrementally

Xiaofeng MENG† Yu LI† and Qing LI‡

†School of Information, Renmin Univ. of China, Beijing, China
‡Computer Science Dept., City Univ. of Hong Kong, HKSAR, China

E-mail: †{xfmeng, liyu17}@ruc.edu.cn, ‡itqli@cityu.edu.hk

Abstract WWW has posed itself as the largest data repository ever available in the history of humankind, which also is highly dynamic
as there are web pages created and/or deleted on a daily basis. Utilizing the Internet as a data source seems to be natural and many efforts
have been made according to the literatures. In this paper we focus on establishing a robust system to collect structured recipe data from the
Web incrementally, which, as we believe, is a critical step towards practical, continuous, reliable web data extraction systems and therefore
utilizing WWW as data sources for various database applications. The reasons for advocating such an incremental approach are that: (1) it is
unpractical to crawl all the recipe pages from relevant web sites as the Web is highly dynamic; (2) it is almost impossible to induce a general
wrapper for future extraction from the initial batch of recipe web pages. In this paper, we describe such a system called RecipeCrawler which
targets at incrementally collecting recipe data from WWW. General issues in establishing an incremental data extraction system are
considered and techniques are applied to recipe data collection from the Web. Our RecipeCrawler is actually used as the backend of a
fully-fledged multimedia recipe database system being developed jointly by City University of Hong Kong and Renmin University of China.

Keyword WWW，Data Extraction，Incremental

1. Introduction

WWW has posed itself as the largest data repository
ever available in the history of humankind, which also is
highly dynamic as there are web pages created and/or
deleted on a daily basis. Utilizing WWW as a data source
seems to be natural and many efforts have been made
according to the literatures. However, devising generic
methods for extracting Web data is a complex (if not
impossible) task, because the Web is very heterogeneous
as well as there are no rigid guidelines on how to build
HTML pages and how to declare the implicit structure of
the Web pages. Various systems, either prototypes or
commercial products, try to solve the problem in two
specific domains: (1) data intensive pages (such as the
search results on Amazon) usually generated by online
database search engines, and (2) data record pages (such
as a single product page on Amazon) usually for product
descriptions. The main difference between the two
domains is that in the former case, there is more than one
data record in each page whereas in the latter case, there
is only one record in each page. Furthermore, data records
of the first case share a common keyword since the web
page is generated by a search engine, but for the second
case the web pages usually share the same page template
as they are formatted by a web page generator.

In this paper we focus on the latter case through
building a robust system to collect structural data from

WWW continuously. It is a part of a collaborative project
between Renmin University of China and City University
of Hong Kong, the goal of which is to build a
fully-fledged multimedia recipe database by collecting as
many recipe web pages as possible. We extract the data
records from the collected recipe pages which will be
later on used in a multimedia database application—
RecipeView (Figure 2). Generally speaking, recipe web
pages are very similar to online product web pages in that
(a) one web page contains only one record, (b) they
follow an underlying template, and (c) there are many
optional attributes. Some examples of recipe pages are
shown in Figure 1. Thus by applying existing techniques,
which are roughly classified into two categories—wrapper
induction and automatic extraction, our goal may be
achieved. However, this turns out to be a non-trivial task
because of the following reasons:

 It is unpractical to crawl all the recipe pages
from a web site. In Figure 1(c), there is an example of a
recipe category list. The webmaster will add/update
some new recipe links (shown in red circle) while
updating other links such as advertisements and
activities. Naive crawling of all updated links will not
only lead to an inefficient strategy but also impact the
latter steps by introducing some noisy web pages. Thus
we have to consider how to identify real recipe links
while crawling pages incrementally.

 It is almost impossible to induce a general
wrapper from first batch of recipe web pages. Because
of the continuous updating of recipe web sites, the
changes of the underlying schema may cause the
existing wrapper broken. For example, Figure 1(a) is a
typical recipe web page when the web site was created.
It only contains a name, a picture, a material list, a
seasoning list and some cooking steps. As time elapses,
the webmaster provides us with some new recipes, one
of which is shown in Figure 1(b). Because some
complex new optional attributes are added (e.g. two
styles of sauce in Figure 1(b)) and the existing
attributes are revised (e.g. seasoning turns to be
repeatable). All of these variations not only cover
simple representation changes, but also involve serious
schema evolutions, which definitely makes
conventional extraction techniques inapplicable.

a b
c

Figure 1 Figure 1 Examples of Recipe and
Category List Web Pages

Due to these observations, our approach is to build a
system (called RecipeCrawler) that can automatically
extract relevant content data, and be able to do so
incrementally so that the new web pages containing new
recipe records may be added dynamically. To this end it
must support the following incremental features in
extraction of newly crawled web pages from the recipe
websites.

1. Incrementally crawling specific web pages. In
our system, some web data sources, such as recipe web
site’s categories, recipe blog pages, or even recipe

online forums，are monitored. Whenever the links are
updated, crawler should not only grab the web page
pointed by the link, but also justify whether it is the
one we need. It is possible as we have some extracted
recipe data records, which can give us the domain
knowledge of recipes.

2. Incrementally extracting web pages for data
records. Either wrapper based or automated method
faces the problem of web site’s schema evolutions.
Extraction program should not only be able to adapt
itself to meet the schema revision, but also be able to
identify new attributes. This is important to help
applications which rely on the extraction system to be
more concrete, useful, and valuable services. And it
also helps the extraction system to be a reasonable and
practical web data extraction system.
By putting all things together, we have to build our

system as a practical robust system which supports
incremental automated data extraction. It is different from
existing systems in which novel modifications are made
upon the tradition architecture. In a nutshell, our
contributions in this paper include: 1) a framework for
building incremental web data extraction system, which is
implemented in our prototype system for collecting recipe
data from WWW incrementally; 2) solutions for adopting
and adapting existing data extraction techniques under
incremental scenarios.

In this paper we describe our RecipeCrawler system in
detail. The rest of this paper is organized as follows. In
section 2, we briefly review some existing techniques on
web data extraction. Section 3 gives out an overview of
RecipeCrawler. Section 4 and 5 discuss our main
considerations in designing and implementing each
component. Finally we give out a conclusion and future
works in section 6.

2. Relate Work
One of the reasons why the Web has achieved its

current huge volume of data is that a great and increasing
number of data-rich web sites automatically generate web
pages according to the data records stored in their
databases. Taking advantage of this fact, several
approaches have been proposed and systems have been
built to extract these data in literature. Generally these
systems fall to two categories: wrapper induction versus
automatic extraction.

With wrapper induction techniques, some positive web
pages are selected as positive examples and then wrappers
are trained. Though using wrappers to do continuous

extraction is possible, wrappers may expire in future [11].
Thus wrapper maintenance problems arose and efforts
were paid in solving it. However, to our knowledge, it
assumes that there are only few small changes in web
pages’ representation whereas in fact the underlying
schema may change [14], such as:(1) attributes that have
never appeared in previously extracted pages may
subsequently be added; (2) attributes appeared in
previously extracted web pages may later be removed.
These can cause the templates induced from existing web
pages to be invalid, thus intuitive extraction strategies
can not be applied. Therefore wrapper induction is not
practical towards long-time, continuous data extraction.

On the other hand, as automatic extraction techniques
can automatically extract structural data without doing
wrapper maintenance from web pages, it becomes more
popular recently years. The first reported work on
automated data extraction was done by Grumbach and
Mecca [3], in which the existence of collections of
data-rich pages bearing a similar structure (or schema)
was assumed. In RoadRunner[2], an algorithm was
proposed to infer union-free regular expressions that
represent page templates. Unfortunately, this algorithm
has an exponential time complexity hence it is impractical
for real-life data extraction systems. Then Arvind and
Hector[4] proposed an improved version with a
polynomial time complexity by employing several
heuristics. Both of these works view web pages in HTML
as a sequence of tokens (single words and tags), so when
it comes to infer a template from complex web pages with
many nesting structures, their solutions are still
inapplicable. Other researchers have tried to solve the
automated data extraction problem by viewing web pages
as a long string, through employing similar generalization
mechanisms (e.g., [5] and [6]). Be aware of the tree
structure of web pages, [1] and [7] presented techniques
based on tree edit distance for this problem. Both of them
utilize a restricted tree edit distance computation process
to find mapping between two web pages and then do
future data extraction. In [1], wildcards are attached to
tree nodes and heuristics are employed when there is a
need to generalize them. In [7], a more advanced
technique named partial tree alignment was proposed,
which can align corresponding data fields in data records
without doing wildcards generalizations. In our system,
we use a similar technique and make it applicable under
incremental data extraction.

While some major works have been done on clustering

or classifying web pages, few of them are on automated
data extraction as far as we can see from the literature. In
[8], several web page features were proposed for
wrapper-oriented classification. In the news extraction
system [1], a hierarchical clustering technique was
proposed to cluster web pages according to their HTML
tree structures. A basic distance measure—edit distance is
calculated by comparing two HTML DOM trees, which
can tell us how similar the two web pages are. When the
web page contains more than one data record, there is
almost no need to do the clustering. But new problems do
arise. For example, how to identify data regions
containing data records in such kind of web pages is a
problem. In particular, several strategies have been
proposed in [15] and [9].

Combining these existing automated data extraction
techniques may lead us to a generic system that is able to
crawl, cluster and extract structured data from a whole
web site once for all. For our recipe collection scenarios,
we need to continuously collect recipe data from the web,
hence modifications to such techniques or other novel
techniques are needed. In the rest of this paper we show
our approach to build an incremental data extraction
system by adopting and adapting the existing web data
extraction techniques.

3. RecipeCrawler – a Recipe Data Collection
System
Starting from this section, we will show the general

considerations on how to build a system to support
incremental features in conventional architecture by
introducing our recipe data collection system. As Figure 2
illustrated, general architecture of current existing
extraction systems were applied. Besides adopting and
adapting the classic components such as web crawler, web
data extractor and annotator, a new component called
“Monitor” is advocated to keep a close watch on recipe
sources. Instead of digging into the details on how it is
designed and implemented as well as how it supports
incremental features, in this section we would like to give
an overview on how recipe data are collected

The mission of RecipeCrawler is to provide RecipeView
with the recipe data records which are embedded in web
pages. Here RecipeView is a user-centered multimedia
view application built on top of the recipe database and
means to provide user continuous, flexible user
experience. It requires the extraction system (viz.
RecipeCrawler) to be incremental because it needs recipe
data updated every day on WWW.

Figure 2 shows an overall picture on how
RecipeCrawler works. In particular, we incrementally
grab recipe web pages by monitoring some data sources,
which are shown in the left part of Figure 2 including
recipe web sites, recipe blogs and recipe online forums et.
al. Considering that their indices are usually accessible
(such as category lists in recipe web sites, taxonomy
pages in recipe blogs and archive lists in recipe online
forums), we establish a module called “Monitor” to find
out the updated links from these sources. In order to
identify whether the specific updated link is just the one
we need, it utilizes extracted data as domain knowledge to
do data clarifications. And survivors, which are definitely
the ones we need, are sent to “Crawler” which does basic
crawling as well as validation and repairing on HTML
pages.

Recipe
Web
Sites

Recipe
Blogs

Recipe
Online
Forum

Monitor

...

Web
Pages Crawler

Automated
Extractor

Recipe
DB

Interactive
Annotation

WWW

Extracted
Data

RecipeView
System

RecipeCrawler System

RecipeView
Application

Notify

Check
Recipe
Web

Pages

RecipeView System

Utilize

Recipe
Category
Pages

Classifier

Figure 2 Recipe Data Extraction System – An
Overview of RecipeCrawler

Next the crawled web pages are delivered to the
“Classifier” which can put pages into different categories.
In this procedure, an algorithm proposed in [1] has been
adopted and adapted to classify web pages according to
their underlying structures (or underlying template). Two
categories—“Recipe Category Pages” and “Recipe Web
Pages” are derived through the step, where the former one
usually contains the detail information of each recipes
and the latter one usually maintains taxonomy of recipes.

In the extraction procedure, web pages in each category
are processed by an “Automated Extractor” and thus
category information and recipe data are retrieved.
Annotation was done by a module named “Interactive
Annotation” which is operated by human, who tells the
system what attribute is what. As our system means to
work in incremental way, being able to handle schema
changes is critical so we proposed a method by adopting
algorithms in [7]. We will future discuss it in section 5 as
well as the mechanism of annotation process. So finally
we get the desired data with corresponding annotations

and thus can import them into DBMS for future
application, which is, in our system, RecipeView.

Before we go to the sections that discuss the details of
each component, we want to emphasize the incremental
nature of RecipeCrawler again. Incremental features in
RecipeCrawler are the basic requirements and also the
significant differences comparing with other systems.
Though there is an initial web page set, which can be
extracted before the RecipeView system is established, we
can not guarantee that the wrapper induced or the schema
learnt in them will always be valid for future cases,
because we can not naively believe the webmaster will
always update recipes or activities, as well as the schema
will not change. In other words, our RecipeCrawler
should face the very dynamic perspective of WWW and
the only choice is to make sure that each component of
our system has the ability of incrementally updating.

4. Retrieving Recipe Web Pages
Monitoring, crawling and classifying procedures in

RecipeCrawler are implemented to retrieve recipe web
pages. In this section we mainly focus on the mechanism
of monitoring and classifying procedures whereas we omit
crawling procedure because its implementation is fairly
simple and straightforward.

Extracted
Data

Link
URL

HTML
Path

Find similar
record

Send to
Crawler

Drop

Yes No

1 L

63 4

1

2
3
4
5
6

...

...

HTML Path
Validation

Text
Validation

No

Yes

Not enough
No

Yes2

Figure 3 Identifying Recipe Links Based on
the Extracted Data - An Example

4.1. Monitoring Recipe Data Sources
Recipe data sources on WWW usually have an index

facility, such as category lists in recipe web sites,
taxonomy pages in recipe blogs and archive lists in recipe
online forums and so on. Monitoring them for updated
recipe links generally should (1) find out whatever
new/updated links, (2) identify whether they are
recipe-related links or not. The former step is easy by
simply comparing current web page with history version
whereas the latter one is complicated. The link discovery
procedure of conventional crawler usually does simple
identifications based on several rules, such as URL

domains, file types and so on. Few works are done on
semantic link discovery because: (1) crawlers are usually
of general use; (2) insufficient domain knowledge can be
utilized to do it. However, in RecipeCrawler, we focus on
recipe web pages, concerning not to introduce noisy web
pages to subsequent procedures; we can even have domain
knowledge by analyzing the extracted data of the initial
set, which can always be selected out when first time we
crawl the web site. With these characteristics in mind, we
proceed to a semantic link discovery method.

As illustrated in Figure 3, our strategy of identifying
recipe links on the basis of the extracted data works as
follows. First, the current index of a web page is
compared to the old one. In this way, the updated links,
texts and HTML paths can be retrieved. For example,
“Fowl Staffed Duck”(in short, FSD) with its link and
HTML DOM path can be retrieved. As machine does not
known whether it is a recipe link, second we try to find
records in extracted data which have similar links. Two
links are similar if we can find a common pattern in them
(In our system, we uses common URL prefix). Only
considering URL pattern is sometime not enough as there
are still some links such as activities may survive.
Therefore we utilize HTML paths and texts for further
clarifications. After finding out similar records of a
specified link, we first check how many records in the
same subtree of it according to HTML paths. Referring
back to the example, as we have FSD’s DOM path and we
also know similar records’ DOM path (which are recorded
in last time’s extraction), this is done by finding common
parent nodes, such as “L” node of the DOM tree in right
bottom corner of Figure 3. Note that we give a simple
DOM tree due to the space reason, in which number
denotes the content. If we can not find any, this link are
probably not recipe link so we discard it. If we can only
find few (in our system, we use 0.5 as the threshold,
which means half out of total records), the text is used as
the third judgment, which is simple keyword matching in
our system, in the hope of finding common recipe
keywords such as “Beef”, “Pork” and so on. If most
records reside in the same subtree, we let the link survive.
Figure 3 illustrates the whole process we have just
described, which, based on our practice, has been quite
effective and efficient.

4.2. Classifying Recipe Web Pages
In the next step, we build a module “Classifier” to

handle the web page classification. The classifier program
in our system has two stages, as shown in Figure 4. In the

first stage we organize the web pages according to URLs,
thus get categories of web sites. This stage is relatively
easy. Next we further classify crawled web pages
according to the tree structures. A clustering algorithm
based on tree edit distance[1] has been adopted and
adapted. As mentioned before, recipe web pages in our
scenario may contain repeatable attributes, so we have
modified the matching process to cover repeatable cases.
It is called sibling matching which is also used in
automated extraction procedure and the details will be
given in section 5.1. After classification we will get two
categories, namely recipe web pages and recipe category
pages, for each web site. Following extractions will be
done in these categories.

Web
Pages

Classifier
Stage 1

Web
Site 1

Web
Site 2

...

Classifier
Stage 2

Recipe
Web

Pages

Recipe
Category
Pages

...

Figure 4 Classifying Recipe Web Pages
The classification procedure is in nature incremental

for cases where there are no big changes in page
templates. When a template (or structure) changes a lot, a
new initial data set needs to be generated so that a new
classification process can proceed.

5. Retrieving Recipe Records
We now describe how RecipeCrawler retrieves recipe

data from the crawled recipe web pages. There are two
modules involved, namely “Automated Extrator” and
“Interactive Annotation”. Though they do different
functions in retrieving recipe data, there is no rigid
execution order. In RecipeCrawler, they are actually
invoked asynchronously. Figure 5 gives an illustration on
how these two modules cooperate with each other. The
Automated Extractor continuously does extraction on web
pages meanwhile the Interactive Annotation is notified
each time new attributes are identified. Automated
Extrator will generate two data tables, namely “Recipe
Data” and “Category Data”, from recipe web pages and
recipe category pages respectively. Each table may
contain some new attributes during the incremental
extraction. Thus an execution of annotation procedure is
needed. Then we select data fields that have been
annotated from these two tables, and join them according
to URLs. Finally data is extracted and ready to be

imported into DBMS.

Automated
Extractor

Interactive
Annotation

Recipe
Data

Recipe
Web

Pages

Recipe
Category
Pages

Category
Data

Notify when
new attribute
discovered

System
Administrator

Recipe
Record

Select annotated attribute and
Join according to URL

Figure 5 Retrieving Recipe Data from Web

Pages
5.1. Automated Extraction

In this module, we adopt techniques proposed in [7] for
automated extraction. As reported in [7], an algorithm
named partial tree alignment based on the simple tree
matching was used to extract data records in data
intensive web pages, such as result pages returned by
online retailer web sites. The recipe category web pages
in our system are also data intensive web pages, so data
records can be directly extracted by applying this
algorithm. But we need to modify it in order to extract
new/updated records in it for supporting incrementally
features. This can be done by comparing currently
extracted results to the former ones, so we do not go any
further here.

On the other hand, extracting data from recipe web
pages is not so easy. It is a non-trivial problem because:
(1) attributes that have never appeared in previously
extracted pages may subsequently be added; (2) attributes
that appeared in previously extracted web pages may later
be removed; (3) attributes that appeared as singleton in
previously extracted web pages may be modified to be
repeatable. For example, referring back to Figure 1, the
“sauce” attribute appearing in Figure 5(b) is an example
of added attributes, and the “seasoning” attribute
appearing both in Figure 5(a) and Figure 1(b) is an
example of revised attributes, which later can be
repeatable. There is no example of removed attributes in
Figure 1, but it is easy to give out: any optional attribute
can be it when we start from web pages containing it to
web pages without it. Though technique proposed in [7]
can roughly handle these situations by selecting and
starting from the maximal web page in the hope of that it

contains as many optional nodes as possible, it is
unfortunately inapplicable in our incremental crawling
scenario. So we have adopted it to fulfill the incremental
requirements.

Instead of explaining the detailed algorithm used by
RecipeCrawler, we give an illustrative example in Figure
6 to show how it works. We suppose there are 5 recipe
web pages, and to be simple, we present them in simple
characters sequence, in which each character denoting a
subtree directly contains text values, such as
“Materials:
Beef 150g” . We can get the
sequence by specific traversal of HTML tree[7], and we
use pre-order traversal here. According to [7], partial tree
alignment first selects the biggest web page as the seed
and then does multiple tree alignment. In our example,
the biggest one is t3. But in an incremental situation, t3
may not be in the initial set because it is not created by
any webmaster at all. In our example, we assume that the
initial set is {t1, t2}, and t3, t4 and t5 are added
subsequently.

1 2 3 4 5 6
a b d e
a d d e f

t1
t2

a c d d e f
a c d f

t3
t4

a

b

d

e

f

a

d

e

f

(4) (5)

a

b

d

e

f

c

t5 a b c d

a

b

d

e

f

c

(1)

(3) (6)

a d d e ft2
a d+ e f
a b d et1

Sibling
Matching

Tree Matching

(2)

b c

Figure 6 Illustration of How Automated Recipe

Data Extraction Works
For the initial set we apply the partial tree alignment

technique. First we do a sibling matching (as shown in
Figure 6(2)), which is used to handle repeatable attributes
(“d” in t2). The sibling matching scans each tree and tries
to match siblings in it. If two sibling nodes match, they
will be replaced by a single example node (we simply
take the first one). We do not consider non-sibling nodes
because usually a list of repeatable attributes will not be
interrupted by other attributes. For example, the

webmaster will not insert some cooking steps in the
middle of listing materials. And the sibling matching
performs whenever we match a web page to another (as
well as the template, see below). After doing that we
make the tree matching based on the edit distance
computation to find mappings. By taking the biggest one
t2 as the template, we can align t1 to it and by applying
partial tree alignment techniques [7] we can also align
optional nodes. The basic idea of partial template
alignment is trying to find the unique insertion location
for each unmatched nodes. In our example, “b” of t1 is
unmatched, but we can find a unique insertion location in
t2 for it, because “a” and “d” are matched and there is
nothing between them in t2. So “b” should be inserted
between “a” and “d” in t2 to form a template. After
inserting all optional nodes as proven in [7], recipe data
is extracted and a template (shown in Figure 6(3)) is
induced. Then an annotation process may be invoked, but
at this time we are not sure that the nodes “b” and “f” are
the data attributes we need (they can be useless values
such as “copyright by…” et. al.). Another reason is that
they may be disjunctions as we have so few instances. So,
in our example, simply suppose that we do not annotate it
at that time so actually we only extract “a”, “d” and “e”.

Now we came to the part of incremental extraction.
Supposing that t3, t4 and t5 will be updated and crawled
one by one, Figure 6(4,5,6) show how the extraction is
done. The basic idea is to match new crawled web pages
with the existing template and insert the unmatched nodes
into the template. When there is not a unique insertion
location for the specific node, we insert it by merging it
as a possible value into possible node. In our example,
when t3 comes, we find that “c” does not have a unique
insertion location as there is already a unannotated “b”
between “a” and “d”, so we merge “c” as a possible value
into “d” thus make the template can cover t3 (as shown in
Figure 6(4)). At this time t3 can be partial extracted with
some part left in induced template, which may be further
matched or annotated (extraction process will give
annotation process a notification at this time). Another
node, say “f”, match with the one in template, thus we
have enough instances to identify “f” as an attribute and
both “f” nodes in t2 and t3 will be extracted.

After processing t3, t4 comes subsequently. This time
we match it with the template too. The difference is that
when matching with node “b c”, we need to match two
times to find the best one. We can see that “c” will be
matched thus attribute “c” will be identified. But we can

not take it out from the “b c” node for there is still no
unique insertion location. The template after matching
and extracting t4 is as be seen in Figure 6(5). After t5
coming, matching with t5 will identify the attribute “b”
too. And the order of attributes “b” and “c” can be
identified since we have t5 as the instance (there is a “b”
“c” sequence in t5). Thus all attributes are identified and
can be extracted. The induced template is shown in Figure
6(6). Next time when new web pages come in, the, same
processing techniques can be used.

Note that currently we do not consider disjunctions in
our strategy due to two reasons. Firstly, disjunctions are
actually not that serious when we are doing incremental
extraction. By using following web pages as examples
(Figure 6(6)), identifying whether there are disjunctions
is easy. Secondly, the chances of disjunctions making our
strategy broken are fairly few. For example, considering a
web page t6(“a c b d e”), our strategy will break while
handling it. But this is rare because t6 means that web
master changes the order of attributes such as giving
“cooking steps” before “materials”. It is usually
impossible and we did not find many cases in our practice,
so that we leave this problem to be a possible future
work.

5.2. Interactive Annotation
Currently in RecipeCrawler the annotation procedure is

designed as an interactive program. It can be
asynchronously invoked by a system operator while the
system does automated extraction. The template induced
by automated extraction will be presented to the operator
for annotation instead of requiring him to do annotation
on each record. When a new attribute is identified, a
notification will be given. Then the system operator can
check the revised template and examples to decide what
kind of attribute it is. Having annotations made to the
extracted recipes and category data, they will be selected
out and joinned based on URLs to generate the final
extraction results. Unannotated data will be reserved in
the extracted data storage for future annotation. This
mechanism ensures us to be able to incrementally extract
meaningful recipe data for RecipeView as soon as newly
crawled web pages come in. In our practice, we perform
the interactive annotation when the initial set was
extracted and when enough (e.g., 10) new web pages are
extracted. The current practice of RecipeCrawler shows
that such an approach is quite reasonable and effective.

5.3. Importing Recipe Data Records
As shown in Figure 2, the extracted recipe data records

by RecipeCrawler are to be utilized by a front-end
application system calledin RecipeView. Since the
retrieved recipe data records come from various sources,
they should go through an importation procedure before
they can be fully utilized. This procedure is called
“Preprocess” in RecipeView, which involves Filtering and
Standardization. The Filtering module makes sure that all
the recipe records are qualified for the system
requirements (e.g. check whether the data fields of each
record are correctly identified). In the Standardization
module, all the recipe records have to conform to a
standard presentation by fusing different data formats
together. For instance, the display sequence of the data
fields in each record must be the same. Thus they become
uniform and consistent. After the “Preprocess” procedure,
the recipe data records are imported into an underlying
DBMS for possible user manipulations within
theutilization in RecipeView system.

6. Conclusion
As we believe, building incremental data extraction is a

critical step towards practical, continuous, reliable web
data extraction systems that utilize WWW as the data
source for various database applications. In this paper, we
have described such a system (viz., RecipeCrawler) which
targets at incrementally collecting recipe data from WWW.
General issues in establishing an incremental data
extraction system are considered and techniques applied
to recipe data collection from the Web. Our
RecipeCrawler has served as the backend of a multimedia
database application system (called RecipeView) and
offers good experimental results. Various techniques
proposed in literature for data extraction from WWW are
adopted and adapted to do the automated recipe data
extraction as well as to support incremental features. As
for future research, besides evaluating and improving our
system, we also plan to address other importantthe i
issues, including better crawling strategies and automated
annotation algorithms.

7. Acknowledgements
This research was partially supported by the grants

from the Natural Science Foundation of China under grant
number 60573091, 60273018; China National Basic
Research and Development Program's Semantic
Grid Project (No. 2003CB317000); the Key Project of
Ministry of Education of China under Grant No.03044 ;
Program for New Century Excellent Talents in
University(NCET).

References
[1] Reis, D. Golgher, P., Silva, A., Laender, A.

Automatic Web news extraction using tree edit
distance, WWW-04, 2004.

[2] Crescenzi, V., Mecca, G. and Merialdo, P.
Roadrunner: Towards automatic data extraction from
large web sites. VLDB-01, 2001.

[3] S. Grumbach and G.Mecca. In search of the lost
schema. 7th ICDT, 314-331

[4] Arasu, A. and Garcia-Molina, H. Extracting
Structured Data from Web Pages. SIGMOD-03, 2003.

[5] Chang, C. and Lui, S-L. IEPAD: Information
extraction based on pattern discovery. WWW-10,
2001.

[6] Wang, J., and Lochovsky, F. Data extraction and
label assignment for Web databases. WWW-03,
2003.

[7] Zhai, Y., and Liu, B. Web data extraction based on
partial tree alignment. WWW-05, 2005.

[8] Crescenzi, V., Mecca, G. and Merialdo,
Wrapping-Oriented Classification of Web Pages.
SAC2002, pages 1108-1112

[9] Zhao, H., Meng, W., Wu, Z., Raghavan, V. and Yu, C.
Fully automatic wrapper generation for search
engines.. WWW-05, 2005.

[10] Kushmerick N. Regression testing for wrapper
maintenance. In Proceedings of AAAI, 1999,74-79

[11] Kushmerick N. Wrapper verification. World Wide
Web Journal, 2000, 3(2): 79-94.

[12] Chidlovskii B. Automatic repairing of Web Wrappers.
In 3rd International Workshop on Web Information
and Data Management, 2001, 24-30.

[13] Knoblock C A, Lerman K, Minton S, Muslea I.
Accurately and Reliably Extracting Data from the
Web: A Machine Learning Approach. Bulletin of the
IEEE Computer Society Technical Committee on
Data Engineering, 2000, 23(4): 33-41.

[14] Xiaofeng Meng, Dongdong Hu, Chen Li.
Schema-Guided Wrapper Maintenance for Web-Data
Extraction.WIDM'03

[15] Bing Liu, Robert Grossman, Yanhong Zhai. "Mining
Data Records in Web Pages." KDD-2003, 2003

[16] Bing Liu and Yanhong Zhai. "NET - A System for
Extracting Web Data from Flat and Nested Data
Records.", WISE-05, 2005

