
2A-o3
QoS-based Dynamic Replication in Mobile Peer-to-Peer Networks

Anirban Mondal1 Sanjay Kumar Madria2 Masaru Kitsuregawa1

1 Institute of Industrial Science
University of Tokyo

Japan
{anirban,kitsure}@tkl.iis.u-tokyo.ac.jp

2Department of Computer Science
University of Missouri-Rolla

USA
madrias@umr.edu

Abstract

The ever-increasing popularity and proliferation of mobile computing technology strongly motivate ap-
plications involving Mobile ad-hoc Peer-to-Peer (M-P2P) networks. Incidentally, an M-P2P network is
one in which mobile hosts (MHs) interact directly with each other in a decentralized peer-to-peer (P2P)
fashion. Notably, network partitioning may occur frequently in M-P2P networks due to user movement
and/or users switching ‘on’ or ‘off’ their mobile devices, thereby decreasing data availability. We envisage
the M-P2P network as a cluster of MHs, which has a cluster head (CH) for facilitating data validation
and replica allocation. The main contribution of this work is the proposal of CLEAR (Consistency and
Load-based Efficient Allocation of Replicas), which is a dynamic replica allocation scheme for M-P2P
networks. For performing effective replica allocation, CLEAR considers a metric NQDC (Number of
Queries answered with a Desired Consistency level) and load as criteria, and uses knowledge of users’
schedules. Results of our extensive performance evaluation demonstrate that CLEAR is indeed effective
in improving data availability in M-P2P networks.

1 Introduction

Rapid advances in wireless communication technology
coupled with the ever-increasing popularity and pro-
liferation of mobile devices (e.g., laptops, PDAs, mo-
bile phones) provide a strong motivation for applica-
tions involving Mobile ad-hoc Peer-to-Peer (M-P2P)
networks. Incidentally, an M-P2P network is one in
which mobile hosts (MHs) interact directly with each
other in a decentralized peer-to-peer (P2P) fashion.
Notably, network partitioning may occur frequently in
M-P2P networks due to user movement and/or users
switching ‘on’ or ‘off’ their mobile devices, thereby
leading to reduced data availability as compared to
that of traditional stationary networks1. Hence, effi-
cient dynamic data replication becomes a necessity in
M-P2P networks for providing mobile users with high
accessibility to relatively fresh data in real-time.

Applications involving zoological data would bene-
fit tremendously from effective replication in M-P2P

1Data availability is less than 20% even in a wired environ-
ment [21].

networks. Zoologists often need to look for habitat
information in remote areas (e.g., dense forests). For
example, a group of zoologists may wish to look for
instances of a specific kind of micro-organism X in a
forest to understand X ’s characteristics. Since techno-
logical infrastructure (e.g., base station) does not exist
in these remote areas, the zoologists need to communi-
cate among themselves using mobile devices in a P2P
fashion. If a particular zoologist finds an instance of
X , he needs to share some data (e.g., the type of envi-
ronment where he found X ’s instance, the number of
instances of X found), by means of replication, with
his colleagues so that they can look for similar type
of environment for locating more instances of X . No-
tably, only a certain desired level of consistency (as
opposed to absolute consistency) is required for effec-
tive data sharing in such applications [18].

Incidentally, data validation is increasingly becom-
ing a major concern in scientific data collection since
erroneous data (collected due to human error or other
factors) is detrimental to scientific databases, thereby
making it necessary for the data to be validated by
an authority figure (e.g., the supervisor of the zoolo-

gists). This motivates the need for one of the MHs
to act as the head of the entire group of MHs in
the M-P2P network. Similarly, effective replication
in M-P2P networks would also facilitate applications
involving disaster recovery. Incidentally, similar to zo-
ologists, workers in disaster recovery scenarios (e.g.,
earthquakes, tsunamis) also need to share data (e.g.,
number of injured people, number of fatalities) with
each other without any technological framework.

Replication techniques for traditional distributed
systems [10] are not adequate for M-P2P networks
partly because they do not address frequent network
partitioning due to user movement and partly due to
the generally limited resources (i.e., disk space, pro-
cessing capacity, battery power) of MHs, which pose
significant challenges to replication. Moreover, P2P
replication services are not ‘mobile-ready’ [6, 20] as
current P2P systems [13, 5] have mostly ignored data
transformation, relationships and network character-
istics. Understandably, changes in data with loca-
tion and time create new research problems [3]. Ex-
isting replication techniques for mobile environments
[22, 17, 11], which assume stationary networks, are also
not adequate for M-P2P networks since they do not
consider frequent network partitioning issues. Repli-
cation in M-P2P networks requires fundamentally dif-
ferent solutions [1, 14] than in [19, 15, 17] due to free
movement of MHs and wireless constraints. Notably,
content providers deploy thousands of cache servers
at the point of presence of major ISPs (Internet Ser-
vice Providers) such as AT&T and Sprint to keep the
contents close to clients for reducing traffic [12]. How-
ever, this would become a performance bottleneck in
case of an M-P2P network. Interestingly, the pro-
posals in [7, 8, 9] consider frequent network parti-
tioning w.r.t. replication in mobile ad-hoc networks
(MANETs). Unlike the works in [7, 8, 9], our work
uses load as a replication criterion, addresses different
levels of replica consistency and deals with unequal-
sized data items. Notably, our proposal does not as-
sume any DHTs (Distributed Hash Tables).

We envisage the M-P2P network as a cluster of
MHs, which has a cluster head (CH) for facilitat-
ing data validation (which is absolutely necessary in
our application scenarios) and replica allocation. The
main contribution of our work is the proposal of
CLEAR (Consistency and Load-based Efficient Allo-
cation of Replicas), which is a dynamic replica alloca-
tion scheme for improving data availability in M-P2P
networks. The main features of CLEAR are two-fold.

1. It considers a metric NQDC (Number of Queries
answered with a certain Desired Consistency
level) and load, while performing replica alloca-
tion.

2. It uses knowledge of users’ schedules for identify-
ing locations from where specific data items are
likely to be accessed.

Results of our extensive performance evaluation
demonstrate that CLEAR is indeed effective in im-
proving data availability in M-P2P networks. The re-
mainder of this paper is organized as follows. Section 2
discusses existing works, while Section 3 presents the
problem context. Section 4 discusses issues concerning
dynamic replica allocation in M-P2P networks, while
our proposed CLEAR scheme has been presented in
Section 5. Section 6 discusses the performance evalua-
tion. Finally, we conclude in Section 7 with directions
for future work.

2 Related Work

The work in [15] proposes a suite of replication pro-
tocols which maintain data consistency and transac-
tional semantics of centralized systems, while provid-
ing flexibility and reasonable performance. The pro-
tocols in [14] exploit the rich semantics of group com-
munication primitives and the relaxed isolation guar-
antees provided by most databases. The work in [4]
discusses replication issues in MANETs. The proposal
in [17] discusses a replication schema for distributed
environments where connectivity is partial, weak, and
variant as in mobile information systems.

Existing systems in this area include ROAM [19],
Clique [20] and Rumor [6], while a scalable P2P frame-
work for distributed data management applications
and query routing has been presented in [16]. In
[3], the problem of updates in truly decentralized and
self-organizing systems, such as pure P2P systems,
has been examined. The proposed update strategy
is based on a hybrid push/pull Rumor spreading al-
gorithm, the aim being to devise a fully decentralized
robust communication scheme which provides proba-
bilistic guarantees as opposed to ensuring strict consis-
tency. The work in [1] investigates replication strate-
gies for designing highly available storage systems on
highly unavailable P2P hosts.

The proposals in [7, 8, 9] present three replica allo-
cation methods with periodic and aperiodic updates,
which take into account limited memory space in MHs
for storing replicas, access frequencies of data items
and the network topology, to improve data accessibil-
ity in MANET environments. Notably, the E-DCG+
approach [9] is among the most influential replica al-
location approaches. By creating groups of MHs that
are biconnected components in a network, E-DCG+
shares replicas in larger groups of MHs to provide
high stability. In E-DCG+, an RWR (read-write ratio)
value in the group of each data item is calculated as
a summation of RWR of those data items at each MH
in that group. In the order of the RWR values of the
group, replicas of data items are allocated until mem-
ory space of all MHs in the group becomes full. Each
replica is allocated at an MH whose RWR value to the
data item is the highest among MHs that have free
memory space to create it. However, the architecture

considered in [7, 8, 9] is not suitable for our applica-
tion scenarios described earlier since it does not con-
sider certain issues such as load sharing and tolerance
to weaker consistency.

3 Context of the Problem

This section discusses the context of the problem.
The problem context concerns an M-P2P environment
comprising MHs, each of which has different amounts
of memory space. Each MH distinguishes between two
kinds of data items stored at itself, namely the data
items that it owns and the replicas. Any data item
di is owned by only one MH, which can update di

autonomously at any time, but other MHs are not al-
lowed to update di. We assume that each MH owns
an equal number of data items, whose sizes may vary,
hence memory space for storing replicas differs across
the MHs. Bandwidth may vary across the MHs.

We envisage the M-P2P network as a cluster, where
an MH with the maximum remaining battery power
and processing capacity is selected as the cluster head
(CH). Hence, CH is capable of transmitting messages
directly via unicast to any given MH in the cluster.
Notably, CH knows the list of data items at each MH.
Due to the cluster covering a relatively small area and
taking our application scenarios (discussed in Section
1) into consideration, the number of MHs in the cluster
can be reasonably expected to be relatively small. We
assume that CH backs up information using the Inter-
net as an interface to handle failures and that some of
the MHs have access to the Internet for backup pur-
poses. In case CH fails or in case of network parti-
tioning, these MHs can connect with the Internet to
obtain the information, thereby enabling them to act
as CH.

Sending and receiving messages expend the gen-
erally poor battery power of MHs, hence reduction
of traffic is critical for optimizing power consump-
tion. Each MH periodically sends some information
for replica allocation (e.g., access statistics informa-
tion, update logs, load) to CH. Update log of a given
MH contains each data item di that it updated in the
last periodic time interval, the initial and updated val-
ues of the updated attribute of di and the timestamp
of the update. Update logs are sent only periodically
to CH for optimizing traffic by piggybacking such logs
onto messages containing replica allocation informa-
tion, even though an MH may update its own data
items aperiodically. For optimizing memory space us-
age, MHs are allowed to delete replicas whose access
frequency falls below a certain threshold.In our pro-
posed model, all queries, updates, replica allocations
and query results must pass via CH for validation rea-
sons, as required by our application scenarios. Observe
that passing all the above data via CH reduces the
number of hops in most cases because on an average,
the number of hops between any two MHs through

CH will be less than the number of hops between any
two MHs without a CH, provided the two MHs under
consideration are not neighbours [2, 14].

When CH receives a query Q for data item di, CH
determines the set of MHs which store di or di’s repli-
cas2, and directs Q to only one of these MHs, hence
our architecture results in significantly lower query-
ing traffic as compared to that of broadcast. Addi-
tionally, when a queried data item di is not available,
CH can determine quickly that di is not available, and
CH can drop the query immediately to further opti-
mize querying traffic. Observe the hybrid nature of
our architecture in that it preserves the autonomy of
the MHs, while deploying CH for facilitating data val-
idation and replica allocation. Now let us examine the
advantages of our proposed architecture by contrasting
with a distributed architecture from the perspectives
of both querying as well as replica allocation.

In a distributed architecture, if any given MH does
not know the list of data items stored at other MHs,
querying would have to proceed by means of broad-
cast, which incurs high traffic. On the other hand,
if each MH maintains information concerning the data
items (and replicas) that are stored at all other MHs in
the entire M-P2P network as well as the approximate
schedules of these MHs, querying traffic would reduce.
However, maintenance of such information itself would
result in high traffic since it would require each MH to
periodically broadcast a list of its data items and its
schedule to all the other MHs, thereby defeating the
very purpose of maintaining such information.

For performing optimal replica allocation in a dis-
tributed architecture, each MH needs to know certain
information related to replica allocation as discussed
earlier. In a distributed architecture, every MH would
have to broadcast this information to every MH in
the entire M-P2P network, thereby resulting in O(N 2)
number of messages, where N is the total number of
MHs. Contrast this with our architecture which re-
quires only O(N) messages since every MH needs to
send this information only to CH.

Load LM of an MH M is defined as follows:

LM = (

d∑

i=1

(ndi
/sdi

))/ηi

where d represents the total number of data items that
are in M ’s job queue ndi

stands for access frequency of
a given data item di during recent time intervals and
sdi

denotes the size of di. Observe how our definition
of load takes variations in the respective sizes of the
data items into consideration. Given that available
bandwidth may differ significantly among MHs, we use
ηi as a parameter for normalizing the load of an MH
w.r.t. available bandwidth. We compute ηi as (BPi

÷

2This is possible since CH knows the list of data items at
each MH.

Bmin), where BPi
represents the available bandwidth

of M . A straightforward way of determining Bmin is
to select a low bandwidth as Bmin e.g., we have used
28 Kbps as the value of Bmin.

4 Issues concerning replica allocation
in M-P2P networks

This section discusses issues concerning replica alloca-
tion in M-P2P networks.

Determination of future user access patterns

The objective of replica allocation is to replicate the
objects of an MH M ’s interest at MH(s) that would
be near to M ’s future location at the time when M
would access the objects. Hence, maintaining some
knowledge concerning which objects M frequently ac-
cesses and when and from where M is likely to access
those objects becomes a necessity for performing effec-
tive replication in M-P2P networks. We propose that
CH should maintain this information. Interestingly, in
practice, given that the owner of each MH has some
schedule in mind, these owners send their respective
schedules to CH. Schedule of an MH contains the lo-
cation of the MH at different points of time and also
specifies which objects the MH is likely to access dur-
ing specific points of time. Notably, even if an MH is
not able to adhere strictly to its schedule, such knowl-
edge would still possibly be useful for determining the
general direction of motion of the MH.

Replica consistency

The desired level of replica consistency is essentially
application-dependent and primarily depends on how
much replica consistency is required by the users of a
given application as opposed to absolute replica consis-
tency. For example, in case of MHs that deal with the
number of hospital beds in an M-P2P disaster recovery
network, high replica consistency would be necessary.
In contrast, for MHs involved in file-sharing applica-
tions in zoological surveys, lower replica consistency
could possibly suffice. Moreover, the ease of maintain-
ing a desired level of replica consistency for any given
data item di should be estimated from the percent-
age change in the value of the attribute Att (which is
updated) of di and not from the number of updates
to Att. Keeping this in mind, we define a measure
NQDC, associated with each data item di, for reflect-
ing the effect of updates on the ease of replica con-
sistency maintenance for di. When CH periodically
receives the update logs from each MH, it analyzes
the update logs (including the timestamp values) to
determine the consistency (w.r.t. desired consistency)
with which queries were answered during the last time
interval and computes the value of NQDC for each
replica in the system as follows.

NQDC = NQ × C if C ≥ DC

= 0 otherwise (1)

where NQ indicates the number of queries answered by
the replica during recent time intervals, DC represents
the desired replica consistency level for the particular
application and C represents the consistency level with
which the queries were answered by the replica. The
values of both C and DC vary between 0 and 1. For
computing the value of C for a given replica r of a data
item d, CH computes the percentage change ∆Attr ,Attd

which should be applied to the attribute Att of r to
reflect the update.

∆Attr ,Attd
= ((V alAttr

− V alAttd
)/V alAttd

)) × 100

where V alAttr
and V alAttd

are the values of Att
for r and d respectively. CH maintains a table
T∆,C which contains a mapping between ranges of
∆Attr ,Attd

and values of C. Given a particular value of
∆Attr ,Attd

, CH finds the corresponding value of C from
T∆,C and uses equation (1) to determine the NQDC
value for r. The values of C corresponding to each
range of ∆Attr ,Attd

are pre-specified and are essentially
application-dependent. Additionally, in case multiple
attributes of d are updated, the value of ∆ should be
calculated as follows:

∆ = (

k∑

i=1

(Wi × (V alir
− V alid

)/V alid
)) × 100

where k is the number of attributes that are updated.
Wi is a value between 0 and 1, which represents the

weight of attribute i such that
∑k

i=1
Wi = 1. The val-

ues of Wi are pre-specified and depends upon the rel-
ative importance of each attribute to the users. V alir

and V alid
denote the values of attribute i for the

replica r and the original data item d respectively.

Detection of hotspots

For hotspot detection purposes, each MH M main-
tains a list data structure DL of the data items that
it owns. Each element of DL is of the form (di, sdi

,
nudi

, Locaccess), where di refers to a specific data item,
sdi

is the size of di and nudi
represents the number of

times that M updated di during recent time intervals.
Locaccess is a linked list data structure, each entry of
which is of the form (MHID, ndi

, tdi
), where MHID

is the identifier of the MH which accessed di, ndi
is

the number of accesses that MHID made to di dur-
ing recent time intervals and tdi

denotes the average
response time for transmitting di to MHID.

As we shall see later, tdi
is used to evaluate the

benefit of replicating di. The elements of Locaccess are
kept sorted in descending order of ndi

for facilitating
quick identification of MHs that frequently access di.
For taking only the recent hotspots into account, each
MH periodically refreshes its DL by completely delet-
ing the information in its DL and populating DL with

fresh access information. Periodically, each MH sends
its DL to CH. Upon receiving these DLs, CH combines
the DLs to create its own DL, which it keeps sorted in
descending order of access frequency of the data items
(normalized w.r.t. data item size).

Cost-effectiveness of replicating a data item

Before actually replicating a data item di (originally
owned by an MH src) at an MH dest, CH uses a for-
mula as a guideline to determine the cost-effectiveness
of performing the replica allocation. (We shall discuss
the selection of dest in Section 5.) Recall that the data
to be replicated has to pass via CH for validation pur-
poses. The communication cost Cdi

of transmitting di

from src to dest via CH is computed as follows.

Cdi
= (

nhop∑

k=1

(sdi
/Bk)) + (sdi

/ BCH,dest) (1)

where sdi
refers to di’s size and Bk refers to the transfer

rates of the respective connections between src and CH
that di must ‘hop’ through to reach CH, nhop refers to
the number of hops required by di to reach CH and
BCH,dest is the bandwidth between CH and dest.

For calculating the benefit Bdi
of replicating di at

dest, CH refers to its DL to find out ndi
and tdi

corre-
sponding to di for dest and computes Bdi

as follows.

Bdi
= tdi

× ndi
(2)

Suppose Decidedi
represents a boolean variable which

is ‘TRUE’ if CH decides to perform the replication and
‘FALSE’ otherwise. Then, using (2) and (3), we have
the following formula:

Decidedi
= (Bdi

− Cdi
≥ TH) (3)

where TH is a pre-defined application-dependent
threshold parameter.

5 CLEAR: A Novel Dynamic Replica
Allocation Scheme for M-P2P net-
works

This section discusses our proposed CLEAR scheme
for effective dynamic replica allocation in M-P2P net-
works. Recall that each MH maintains a list DL, which
contains details concerning the data items stored at
itself and periodically, each MH sends its DL to CH,
which CH combines to create its own DL. CH sorts
the data items in its DL in descending order of their
(ndi

/sdi
), where ndi

and sdi
represent the total num-

ber of accesses to a data item di and the size of di re-
spectively. The data items, for which (ndi

/sdi
) exceeds

a pre-specified threshold, are put into a list DataRep.
Now CH traverses DataRep and deletes those data
items, for which NQDC values fall below a certain
threshold, from DataRep. This is because a data item

di having a low NQDC value implies that it would
be difficult to maintain the replica consistency for di,
thereby making di an unsuitable candidate for replica
allocation.

Algorithm CLEAR REPLICA ALLOCATION

ndi
: Number of accesses to data item di

sdi
: Size of data item di

DL: List maintained by CH concerning information about data

items of all MHs

Sort data items in DL in descending order of (ndi
/sdi

)

Select from DL those data items, whose (ndi
/sdi

) exceeds a

certain threshold, into a list DataRep

Traverse DataRep once to delete data items with low values

of NQDC

for each data item di in DataRep

Determine from DL the MH MHmax which made maximum

number of accesses to di

Check MH schedules to create a list of MHmax’s k-hop

neighbours

Create a set DEST consisting of MHmax and its k-hop

neighbours

Delete MHs with low available memory space from DEST

Delete MHs, which have low load difference with di’s owner,

from DEST

for each MH M in DEST

if (Decidedi
!= ‘TRUE’)

Delete M from DEST

Sort the remaining MHs in DEST in ascending order of load

Select the least loaded MH min into a list Cand

From DEST , add MHs, which have low load difference

with min, to Cand

From Cand, select the MH with highest probability of

availability as the destination MH for storing di’s replica

end

Figure 1: Algorithm for CLEAR replica allocation
scheme executed by CH

Given a specific data item di in DataRep, CH deter-
mines a destination MH for storing di’s replica as fol-
lows. First, CH consults its DL to determine the MH
MHmax which has made the maximum number of ac-
cesses to di during recent time intervals. Incidentally,
even though MHmax accesses di the maximum num-
ber of times, a number of other MHs in the vicinity of
MHmax may also be interested in accessing di. More-
over, it may not always be possible for CH to replicate
di at MHmax e.g., due to MHmax being overloaded or
MHmax lacking the memory space for storing di. We
define the set of MHs in the vicinity of MHmax as com-
prising all the k-hop neighbours of MHmax. Results
of our preliminary performance studies to determine

the value of k revealed that k=3 provides good perfor-
mance for CLEAR. Hence, CH checks the schedules
of all the MHs and considers MHmax and the MHs
that would be in the close vicinity of MHmax in the
near future as constituting the potential candidate set
DEST of MHs, where di may be replicated.

CH traverses each MH in DEST to delete those
MHs, which have low available memory space. Then
CH deletes all those MHs, whose load difference with
the owner of di, falls below a pre-specified threshold.
Next, CH computes the value of Decidedi

for each of
the remaining MHs in DEST and deletes from DEST
those MHs for which Decidedi

evaluates to ‘FALSE’.
Furthermore, CH sorts the remaining MHs in DEST
in ascending order of load. Finally, CH puts the least
loaded MH min of DEST as well as other MHs, whose
load difference with min is not significant, into a list
Cand. The MH in Cand with highest probability of
availability is selected as the destination MH for stor-
ing di’s replica. Notably, over a period of time, CH will
know the probability of availability of the MHs in the
M-P2P network by keeping records of such MH avail-
ability information in its log files. The algorithm for
CLEAR replica allocation executed by CH is depicted
in Figure 1.

For performing query redirection to replicas, CH
first identifies the set ReDirect of MHs, which store a
replica of the queried data item di. Then CH deletes
those MHs from ReDirect, which have low load differ-
ence with the owner of di and/or which are overloaded
and/or low probability of availability. CH sorts the
remaining MHs in ReDirect to select the least loaded
MH m into a set S. All the other MHs, whose load
difference with m is low, are also added to set S. Now
CH sums up the NQDC values for all replicas (during
the last time interval) stored at each of the MHs in S
and redirects the query to that MH of S, which has
the highest total NQDC value, any ties being resolved
arbitrarily.

6 Performance Evaluation

This section reports the performance evaluation of
CLEAR. The MHs move according to the Random
waypoint model [2] within a 1000 metre ×1000 metre
area. A total of 200 data items in the entire network is
uniformly distributed among the 50 MHs i.e., each MH
owns 4 data items. Each query is a request for one of
the data items residing in the entire system. We used
the Zipf distribution for determining the number of
queries to be directed to each MH. CH performs replica
allocation periodically i.e., after every RP queries that
pass via CH. As in [9], we assume that the network
topology does not change significantly during replica
allocation since it requires only a few seconds. Ta-
ble 1 summarizes the parameters used for our perfor-
mance study. In Table 1, query interarrival rate of 100
queries/s implies that 100 queries pass via CH every

second.

The metrics for our performance study are average
response time (ART) of a query, percentage success
ratio (SR) and traffic during the replica allocation
period. We define SR as (QC/QT)*100, where QC

is the number of queries that were answered with the
desired consistency level and QT represents the total
number of queries. We define traffic as the total hop
count during the course of the experiment. We use the
E-DCG+ approach in [9] (discussed in Section 2) as
reference since the E-DCG+ approach is among the
most influential approaches for replica allocation in
mobile ad-hoc networks. Since the context in which
the E-DCG+ approach was proposed differs from that
of our context, we do not make any claims concerning
the superiority of our approach over E-DCG+. In par-
ticular, unlike the E-DCG+ approach, our approach
assumes the existence of CH that can directly commu-
nicate with any node in the ad-hoc network. However,
we use the E-DCG+ approach as the basis for com-
parison because it has similar aims as our approach.
E-DCG+ is executed at every replica allocation pe-
riod. As a baseline, we also compare CLEAR with
an approach, designated as NoRep, which does not
perform any replication.

Performance of CLEAR

We conducted a simulation experiment using the de-
fault values of the parameters shown in Table 1. CH
performs replica allocation after every 1000 queries,
hence the results in Figure 2a indicate comparable
ART for all three approaches upto the time the first
1000 queries are issued. The difference in ART be-
tween CLEAR and E-DCG+ keeps on increasing as
the number of queries increase. This occurs because
CLEAR allocates replicas to relatively underloaded
MHs and redirects queries for ‘hot’ data items to un-
derloaded MHs that store those ‘hot’ data items. In
contrast, since E-DCG+ does not consider load, it may
allocate replicas to the overloaded MHs, hence queries
may often need to retrieve data items from overloaded
MHs, thereby incurring higher ART due to the large
job queues at these MHs. The phenomenon of high
waiting times in the job queues of overloaded MHs
is even more pronounced in case of NoRep than for
E-DCG+. The experimental log files revealed that
CLEAR outperformed E-DCG+ and NoRep by upto
46% and 64% respectively in terms of ART.

Figure 2b indicates that SR remains relatively con-
stant in case of NoRep since it depends only upon the
probability of availability of the MHs. E-DCG+ pro-
vides better SR than NoRep because an MH being un-
available in case of NoRep implies that the query fails.
But for E-DCG+, replication increases the probabil-
ity of the query being answered by at least one of the

Parameter Default value
Number of MHs (NMH) 50

Zipf factor (ZF) 0.9
Query Interarrival rate 100 queries/s

Bandwidth between MHs 28 Kbps to 100 Kbps
Size of a data item 50 Kb to 350 Kb

Memory space of each MH 1 MB to 1.5 MB
Probability of availability of an MH 50% to 85%

Number of queries 5000
Replica allocation period RP (102 Queries) 10

Write probability (WP) 20
Total number of data items 200

Desired consistency level (DC) 0.3
Size of message headers and meta-information 220 bytes

Speed of an MH 1 metre/s to 10 metre/s
Communication range of MHs (except CH) Circle of 100 metre radius

Table 1: Parameters used in Performance Study

5

10

15

20

25

1 2 3 4 5

A
R

T
 (

1
0

2
 s

)

No. of queries (103)

CLEAR
E-DCG+

NoRep

(a) ART

20

40

60

80

100

1 2 3 4 5

S
R

No. of queries (103)

CLEAR
E-DCG+

NoRep

(b) SR

2

4

6

8

1 2 3 4 5

T
r
a
f
f
ic

 (
1

0
3
)

No. of queries (103)

CLEAR
E-DCG+

NoRep

(c) Replica allocation Traffic

20

40

60

80

1 2 3 4 5
T

r
a
f
f
ic

 (
1

0
4
)

No. of queries (103)

CLEAR
E-DCG+

(d) Querying Traffic

Figure 2: Performance of CLEAR

MHs, given the low values of DC and WP for this ex-
periment. After replica allocation, CLEAR provides
higher SR as compared to E-DCG+ due to two rea-
sons. First, CLEAR directs any query concerning a
data item di to an underloaded MH, which had pro-
vided the best NQDC value for di during the previ-
ous time interval, thereby increasing the probability
of obtaining higher SR. In contrast, E-DCG+ directs
queries to any MH which contains di without consid-
ering consistency issues. Second, since E-DCG+ may
allocate replicas to overloaded MHs, updating data
items in such MHs require more time since the updates
have to wait in the possibly large job queues of these
overloaded MHs. Hence, the probability of answer-
ing queries with obselete data increases in case of E-
DCG+. For both CLEAR and E-DCG+, SR changes
only very slightly after the first replica allocation pe-
riod because most of the required replica allocations
were already performed in the first period.

During replica allocation, E-DCG+ requires every
MH to broadcast its RWR values to every MH, while

CLEAR requires each MH to send only one message
to CH, thereby explaining the results in Figure 2c.
Figure 2d depicts the querying traffic for CLEAR and
E-DCG+. In case of E-DCG+, querying has to pro-
ceed by means of broadcast, thereby resulting in ex-
tremely high querying traffic for E-DCG+. However,
for CLEAR, the querying traffic is significantly lower
than that of E-DCG+ due to two reasons. First, CH
can reach any MH within one ‘hop’. Second, since
CLEAR requires the queries as well as the correspond-
ing query results to pass via CH, the total number
of hops is usually much lower than that of broadcast.
Observe that the traffic increases with increasing num-
ber of queries because larger number of queries imply
higher traffic. Since our main focus is replica alloca-
tion, we shall not discuss querying traffic any further.

7 Conclusion

The ever-increasing popularity and proliferation of
mobile computing technology strongly motivate ap-
plications involving M-P2P networks. Notably, net-

work partitioning may occur frequently in M-P2P net-
works due to user movement and/or users switching
‘on’ or ‘off’ their mobile devices, thereby decreasing
data availability . We have envisaged the M-P2P net-
work as a cluster of MHs, which has a cluster head
for facilitating data validation and replica allocation.
We have proposed the CLEAR scheme for dynamic
replica allocation in M-P2P networks to improve data
availability. For performing effective replica alloca-
tion, CLEAR considers a metric NQDC and load as
criteria, and uses knowledge of users’ schedules. Re-
sults of our extensive performance evaluation demon-
strate that CLEAR is indeed effective in improving
data availability in M-P2P networks. In the near fu-
ture, we plan to address continuous queries in an M-
P2P network.

References

[1] R. Bhagwan, D. Moore, S. Savage, and G. M.
Voelker. Replication strategies for highly avail-
able peer-to-peer storage. Proc. Future Directions
in Distributed Computing, 2003.

[2] J. Broch, D.A. Maltz, D.B. Johnson, Y.C. Hu,
and J. Jetcheva. A performance comparison of
multi-hop wireless ad hoc network routing proto-
col. Proc. MOBICOM, pages 159–164, 1998.

[3] A. Datta, M. Hauswirth, and K. Aberer. Up-
dates in highly unreliable replicated peer-to-peer
systems. Proc. ICDCS, 2003.

[4] L.D. Fife and L. Gruenwald. Research issues
for data communication in mobile ad-hoc net-
work database systems. Proc. SIGMOD Record,
32(2):22–47, 2003.

[5] Gnutella. http://www.gnutella.com/.

[6] R. Guy, P. Reiher, D. Ratner, M. Gunter, W. Ma,
and G. Popek. Rumor: Mobile data access
through optimistic peer-to-peer replication. Proc.
ER Workshops, 1998.

[7] T. Hara. Effective replica allocation in ad hoc
networks for improving data accessibility. Proc.
IEEE INFOCOM, 2001.

[8] T. Hara. Replica allocation in ad hoc networks
with periodic data update. Proc. MDM, 2002.

[9] T. Hara and S. K. Madria. Dynamic data repli-
cation using aperiodic updates in mobile ad-hoc
networks. Proc. DASFAA, 2004.

[10] A. Helal, A. Heddaya, and B. Bhargava. Repli-
cation techniques in distributed systems. Kluwer
Academic Publishers, 1996.

[11] Y. Huang, A. P. Sistla, and O. Wolfson. Data
replication for mobile computers. Proc. ACM
SIGMOD, 1994.

[12] S. Kapadia, S. Ghandeharizadeh, and B. Krish-
namachari. Comparison of replication strategies
for content availability in c2p2 networks. Proc.
MDM, 2005.

[13] Kazaa. http://www.kazaa.com/.

[14] B. Kemme. Implementing database replication
based on group communication. Proc. Future Di-
rections in Distributed Computing, 2002.

[15] B. Kemme and G. Alonso. A new approach to de-
veloping and implementing eager database repli-
cation protocols. Proc. ACM TODS, 25(3), 2000.

[16] V. Papadimos, D. Maier, and K. Tufte. Dis-
tributed query processing and catalogs for peer-
to-peer systems. Proc. CIDR, 2003.

[17] E. Pitoura. A replication scheme to support weak
connectivity in mobile information systems. Proc.
DEXA, 1996.

[18] E. Pitoura and B. Bhargava. Maintaining consis-
tency of data in mobile distributed environments.
Proc. ICDCS, 1995.

[19] D. Ratner, P.L. Reiher, G.J. Popek, and G.H.
Kuenning. Replication requirements in mobile en-
vironments. Proc. Mobile Networks and Applica-
tions, 6(6), 2001.

[20] B. Richard, D. Nioclais, and D. Chalon. Clique:
A transparent, peer-to-peer replicated file system.
Proc. MDM, 2003.

[21] S. Saroiu, P.K. Gummadi, and S.D. Gribbler. A
measurement study of peer-to-peer file sharing
systems. Proc. MMCN, 2002.

[22] O. Wolfson, S. Jajodia, and Y. Huang. An
adaptive data replication algorithm. Proc. ACM
TODS, 22(4):255–314, June 1997.

