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ABSTRACT 
Widespread interest in time-series similarity search has 
made more in need of efficient technique, which can 
reduce dimensionality of the data and then to index it 
easily using a multidimensional structure. In this paper, 
we introduce a technique, which we called grid 
representation, based on a grid approximation of the data. 
We propose a lower bounding distance measure that 
enables a bitmap approach for fast computation and 
searching. We also show how grid representation can be 
indexed with a multidimensional index structure, and 
demonstrate its superiority. 
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1. INTRODUCTION 

There have been much interests and research work 
on time series data. Widespread interest in 
time-series similarity search has made more in need 
of efficient technique, which can reduce 
dimensionality of the data and then to index it easily 
using a multidimensional structure, and it has been 
proved to be an efficient and promising way 
[2,5,7,9,10,25]. It is described in [28] that “the key 
to the efficiency and accuracy of the solution is to 
choose an appropriate data representation method”. 
Many representation techniques for time series data 
have already been proposed, including Discrete 
Fourier Transform (DFT) [1], Discrete Wavelet 
Transform (DWT) [8,12,13], Singular Value 
Decomposition (SVD) [14,15], Piecewise Aggregate 
Approximation (PAA) [5,11], Symbolic Aggregate 
approXimation (SAX) [6, 16], etc. In this paper, we 
introduce a grid representation technique for time 
series dimensionality reduction and indexing. Our 
proposed method which we call Grid Representation 
is a completely competitive technique, as we will 
show in this paper. 

We usually use a two-dimensional time-value space 
to process the time series, and most of existing 
representation techniques are based on this space. In   
[29, 30], the authors proposed a grid space to index 
the time series, which is completely different from a 
two-dimensional time-value space in other methods. 

Our method is also based on a grid space, by which 
a bitmap measure can be adopted for efficient 
computation, and the index can easily be constructed, 
alike the proposed method in [29,30].  

The rest of this paper is organized as follows. After 
introducing the grid representation and the distance 
measures defined on it with some background 
research in Section 2, we discuss the dimensionality 
reduction approach in Section 3. Then we illustrate 
the grid bitmap approach of computation in Section 
4. In section 5, the index construction is presented. 
Section 6 contains an experimental evaluation. 
Finally, in Section 7, we summarize this work. 

2. THE GRID REPRESENTATION 

Our proposed representation works by putting each 
time series into a grid space. Figure 1 gives the 
intuition of our idea. 

Given a time series C = {c1,…,cn}, we are able to 
produce an grid representation as 

C = {<Cg1, Cgp1>,…,<Cgn, Cgpn>}        (1) 

where Cgi is the row number, in which the grid 
involving the ith point is seated (i.e. Cgi is a natural 
number, such as 1, 2,3…) and the Cgpi  only can be 
either 1 or 0. We will discuss how the value of Cgpi 
is set in the following subsection. 

 
Figure 1: Grid Space, in which there are two time series Q 
and C with the same length of 9. Their grid 
representations respectively are Q = {<1, 0>, <3, 0>, <5, 
0>, <2, 1>, <4, 1>, <6, 1>, <7, 1>, <4, 0>, <3, 1>} and C I 
{<2, 1>, <3, 0>, <4, 1>, <4, 0>, <7, 1>, <3, 1>, <6, 0>, <3, 
0>, <3, 0>} 



   

2.1 The Grid Space. 

Basically we always use a two-dimensional 
value-time space to locate time series data. However, 
in our method we make a little change of the space 
usage. As shown in the figure 1, we divide the 
two-dimensional value-time space into many 
snuggled rectangles with no overlaps and with the 
same size by two mutually orthogonal equidistant 
sets of lines that parallel to vertical axis and to time 
axis respectively. The distance between the adjacent 
lines paralleling to vertical axis, called the length 
(see figure 2 (a)) of the grid, is easy to fix, just equal 
to the time axis directional distance between two 
adjacent original points in a time series. So we can 
guarantee that all points in the same time sequence 
can be located in different columns. The distance 
between the adjacent lines paralleling to time axis, 
called the width (see figure 2 (a)) of the grid, 
depends on the extent of the time series. For 
example, assume that the difference between 
maximum and minimum values of a time series is R, 
and the number of the rows is m. Then, the width 
should be R/m. It goes without saying that m 
depends on the application and that larger m causes 
better quality, but lower speed for similarity-based 
searching.  

Having transformed a two-dimensional value-time 
space into a grid space, every point of a time series 
will be involved in one grid in the grid space. For 
more definite position of the point in a grid, we 
divide the grid in two half-size rectangles by a 
middle line, as shown in the figure 2, if there is a 
point in it. If the i-th point of a time series data is 
seated in the upper rectangle in the grid, Cgpi is set 
to 1, conversely, otherwise, the Cgpi is set to 0, as 
shown in the figure 2 

 

 

 

 

Figure 2:  the grid is divided into two same rectangles. 
When the point is in the upper one, like (a), the Cgp is 1, 
otherwise, like (b), the Cgp will be 0. 

2.2. Lower Bounding Euclidean Distance  

Firstly we will review some existing definition on 
the distance measure, before we define the lower 
bounding distance for our grid representation. 

Suppose that we have two time series data, a query 
Q = {q1,…,qn} and a data set in DB C = { c1,…,cn }, 
and we compare these two time series data set, we 

can use the following ubiquitous Euclidean distance 
as described in such as. 

 

                                      (2) 

As usual, we remove the square root calculation to 
in the above Euclidean distance function, because 
the square root function is monotonic and concave, 
which can be shown in [28].  

                                         
(3) 

According to Ratanamahatana, Keogh, Bagnall, and 
Lonardi [28] "other optimizations are allowed to 
slightly speed up the calculations or get better 
quality while working with this latter distance 
measure". 

Then we will define the square distance for the grid 
representation, which can lower bound the square 
Euclidean distance. Now suppose that Q and C are 
the grid representation of Q and C respectively, 
where Q = {<Qg1, Qgp1>,…,<Qgn, Qgpn>}, C = 
{<Cg1, Cgp1>,…,<Cgn, Cgpn>}. LB_grid(Q,C), 
lower bound distance, is defined as:  
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where Hg is the width of the grid, which we defined 
before. We will prove the claim of lower bounding 
the grid representation. 

 

Figure 3: The lower bounding function LB_grid(Q,C). 
The red lines deputize for the distance between Q and C 

Proposition 1: LB_grid(Q,C) lower bounds the 
square Euclidean distance between original 
subsequences. 
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Figure 4: The 5 possible cases of two points q in time series Q and c in time series C for distance calculation in the 
grid space. D(q, c) is squared length of the red line, and LB_grid(q,c) is the squared length of the blue line. 

Proof.  We present a proof for the case of only one 
point in the grid representation. The more general 
proof for the n points case can be obtained by 
applying the proof to each of the n points. 

Let q and c is one point of two time series Q and 
C, q and c is the grid representation of q and c 
respectively. Firstly we note that by function (3), 
D(q,c) ≥ 0. We then consider the five possible 
cases. 

(1) qg = cg 

(2) qg < cg, cgp = 1, qgp = 0 

(3) qg > cg, cgp = 0, qgp = 1 

(4) qg < cg, cgp = 0, qgp = 1 or 0 

(5) qg > cg, qgp = 1, cgp = 1 or 0 

In case (1), by definition (4), LB_grid(q,c) = 0, 
hence LB_grid(q,c) ≤ D(q,c). 

In case (2) and (3), LB_grid(q,c) = (qg - cg)2Hg2. 
We assume the distance q and c to the middle line in 
the grid is Xq and Xc, obviously Xq ≥ 0, Xc ≥ 
0. 

Then    D(q,c) = (∣qg - cg∣Hg + Xc +Xq)2,  

Because     Hg is the width of the grid, 

            Hg > 0 

Since  Xq ≥ 0, Xc ≥ 0 and ∣qg - cg∣> 0 

Then (∣qg - cg∣Hg + Xc +Xq )2 ≥ [(qg - 
cg)Hg]2 = (qg - cg)2Hg2 

So   LB_grid(q,c) ≤ D(q,c).  

The proof of the cases left is very similar with above, 
just instead the Xq and Xc by Yq and Yc, which is 
the distance of q and c to the according top or 
bottom of the grid (showed in figure 4). So here we 
will not give more proof, it is easy to get 
LB_grid(q,c) ≤ D(q,c) in case (4) and (5). This 
concludes the proof. 

Figure 4 illustrates the visual intuition of the proof. 

The extension of this proof to the Euclidean distance 
is trivial, and will be omitted due to space 
limitations. 

3. DIMENSIONALITY REDUCTION 

In order to make it easy to understand the proposed 
method, we just describe how to directly generate 
grid presentation based on the original time series. 
However, our grid technique also allows a time 
series data with arbitrary n points to be reduced to a 
sequence with arbitrary 2m points, where 2m < n, 
typically 2m << n, by adding an intermediate step in 
a process of generating grid representation from the 
original time series. This step is used to reduce the 
dimensionality efficiently. We utilize the PAA at the 
intermediate step, which we review in the next 
section. 

3.1 A Brief Review of PAA 

 

Figure 5: The PAA Representation. This original figure is taken 
from [5]. 

A time series C of length n can be represented in an 
N-dimensional space by a 



   

vector 1 NC c , , c= K .The ith element of C  is 
calculated by the following equation: 

n

n ( 1 ) 1

c c
n

N j

i j

j i
N

N

= − +

= ∑             (5) 

It is very simple that we divide the data into N 
equal-length frames and calculate the mean value of 
the data in them. The ci is just the vector of these 
value. Thus the dimensionality is reduced from n to 
N.  

Keogh, Chakrabarti. Pazzani, and Mehrotra [5] use a 
good way of visualization as "approximating the 
original time series with a linear combination of box 
basis function", which is shown in Figure5. The 
complicated subscripting in Eq. 5 insures that the 
original sequence is divided into the correct number 
and size of frames. 

The PAA transformation is much faster in 
computing, can be defined for arbitrary length 
queries, and is able to handle many different 
distance measures [17,18]. It has been shown that 
the PAA is strongly competitive with more 
sophisticated dimensionality reduction techniques 
like Fourier transforms and wavelet [5,8,11]. 

3.2 The Grid Representation Based On 
Dimensionality Reduction 

 

Figure 6: A PAA representation is transformed to grid 
representation. In this case, we take the middle point of 
every segment in C  which we showed in Figure5, then 
put them in to the grid space whose grid length is just 
equal to the length of the segments. Thus, we can get the 
dimensionality-reduced grid representation of C easily as 
C = {<3, 1>, <3, 0>, <3, 0>, <1, 1>, <3, 1>, <5, 0>, <5, 
1>, <7, 0>} 

We can apply a further transformation to obtain a 
dimensionality-reduced grid representation after 
transforming a time series data into the PAA. 
Suppose a time series data C of length n is 
represented 1 NC c , , c= K by a PAA 
representation, we just take the middle point of 
every segment ic  to stand for the segment. Then 

we put these N points to in the grid space 
appropriately whose grid length  is equal to that of 
the PAA segment, thus the dimensionality- reduced 
grid representation of the time series data can easily 
be obtained as Q = {<Qg1, Qgp1>,…,<QgN, QgpN>}, 
C = {<Cg1, Cgp1>,…,<CgN, CgpN>}. Figure 6 
illustrates this notation. For the rest of the paper, we 
just say grid representation, which always means 
dimensionality-reduced grid representation. 

3.3 Dimensionality-Reduced Grid 
Representations Distance Measure 

We can define a new square distance measure 
RLB_grid(Q,C) between grid representation Q = 
{<Qg1, Qgp1>,…,<QgN, QgpN>}, C = {<Cg1, 
Cgp1>,…,<CgN, CgpN>} of a query Q = {q1,…,qn}, 
a candidate match C = { c1,…,cn } as the following 
format: 
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This square distance is also lower bounds the square 
Euclidean distance between original subsequences. 
Suppose Q  and C  are the PAA representations 
of Q and C, then we can obtain a lower bounding 
distance of the square Euclidean distance between 
original subsequences [5]: 

N 2
i ii 1

n
SDR(Q,C) (q c )

N =
≡ −∑            (7) 

In fact, this distance is also the square Euclidean 
distance between Q  and C . Hereby 
RLB_grid(Q,C) lower bounds 
SDR(Q,C) according Proposition1. That is to say: 

RLB_grid( , ) SDR(Q,C) D(Q,C)Q C ≤ ≤    (8) 

where D(Q, C) is the square Euclidean distance 
between original subsequences which is showed in 
Equ.3. Therefore, we can have  

Proposition 2: RLB_grid(Q,C) lower bounds the 
square Euclidean distance between original 
subsequences. 

4. EFFICIENT GRID BITMAP 
APPROACH  

In our distance function described in Eq. (6) above, 
n/N and Hg2 are constant, and Qgi and Cgi are 
positive integers which are not so large, usually 
smaller than 100, because the useful range of for 



   

most spatial index structures is just 8 to 20 
dimensionalities [19,20]. Thus the computation will 
become much easier. In order to make the distance 
function more competitive and the computation 
much faster, we will propose a grid bitmap approach 
to find those Qgi which are not equal to their 
corresponding Cgi. Since in Eq. (6), we define the 
distance between point qi and ci is set to 0 when Qgi 
= Cgi , i.e. qi and ci are located in the same grid, so it 
is easier and faster to compute the distance if we 
know when  Qg Cg  

i i
≠ . And a major advantage of 

bitmap approach is that bitmap manipulations using 
bit-wise operators (AND, OR, XOR, NOT) can be 
very simple and very efficient, usually supported by 
hardware. Our grid bitmap is defined as the 
following: 

Given a grid transformation, in the grid space we 
mark 1 in a grid if there is a point in it, else we mark 
0.  

For example, we transform the grid space in Figure 
6 to a grid bitmap by the definition as shown in 
Figure 7. 

 

Figure 7: grid bitmap 

Then if we match two grid bitmaps of a query Q and 
a time series C by applying the XOR operator, the 
result will show in which column of the grid 
space  Qg Cg  

i i
≠ . Figure 8 illustrates the 

processing.  

Like shown in Figure 8, the grid representation of Q 
is Q = {<2, 0>, <1, 1>, <2, 1>, <2, 0>}, that of C is 
C = {<2, 0>, <1, 0>, <1, 0>, <2, 1>}. We transform 
them to grid bitmaps, then match two bitmaps by 
applying XOR operator, the result is that only in 
column 3 there are two “1”s, which means 
only 3 3

Qg Cg  ≠ . So when we compute 
RLB_grid(Q,C), we can just focus on column 3. 
Since Qg3 = 2, Qgp3 = 1, Cg3 = 1 and Cgp3 = 0, (Qg3 
- Cg3) (Qgp3 - Cgp3) = 1 > 0. Hence, 

2 2 2
 

3 3

n n
RLB_grid( , ) = (Qg - Cg ) Hg Hg

N N
Q C =  

where N is always 4, n is the length of  original 
time series Q and C, Hg is the width of the grid, also 
a constant. 

 

Figure 8: Processing of grid bitmap operation 

5. INDEX CONSTRUCTION 

In this section we describe how to index grid 
presentation using a multidimensional structure, 
such as R-tee. We define a Grid Bounding Region 
(GBR) and a lower bounding distance measure for it 
instead of traditional Minimum Bounding Rectangle 
(MBR) [24] for the index. 

5.1 Grid Bounding Regions 

Given group SC of n grid representations of length 
2N, SC = {C1,…, Cn}, the Grid Bounding Region of 
SC is defined like Skyline Bounding Region (SBR) 
in Skyline index [21], a two-dimensional region 
surrounded by top and bottom skylines and two 
vertical lines connecting the two skylines at the start 
and end times. The top (TS) and bottom (BS) 
skylines of S are defined as follows: 

TS = {<TSg1, TSgp1>,…, <TSgN, TSgpN>} 

BS = {< BSg1, BSgp1>,…, < BSgN, BSgpN>} 

Where, for 1 i N≤ ≤ ,TSgi = max{C1g[i],…, 
Cng[i]}, BSgi = min{ C1g[i],…, Cng[i]}, Cjg[i] is the 
ith Cg value of jth grid representation in SC, and 
TSgp and BSgp are the counterparts of TSg and BSg 
in C respectively.  

Figure 9 shows the grid bounding region for 3 grid 
representations. The same as SBR, GBR is only one 
region. Therefore, GBR is free of internal overlap 
[21], which is efficient for index. 



   

 

Figure 9: Grid Bounding Region of grid representations. 

5.2 Distance Function for Grid Bounding 
Regions 

Given a query’s grid representation Q and a time 
series’ C, according to function 6 we can know the 
distance between two corresponding grids of Q and 
C is as follows, 

2 2
i i i i i i

2 2
i i i ii i

i i i i

n
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N
                                     (Qg - Cg)(Qgp- Cgp) 0
0                 
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⎪
⎪
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(9) 

Then we can define a new distance function (LBGBR) 
to lower bound the distance from Q to a GBR R for 
using the GBR representation in a multidimensional 
index as following: 

i i i
i

GBR i i i
i

N

i=1

RLB_grid( ,TS)     (Qg >TSg )
LB ( , ) RLB_grid( ,BS)     (Qg < BSg)  

0                                       

Q if
Q R Q if

otherwise
=

⎧⎪
⎨
⎪⎩

∑                                      

(10) 

where TSi is TS in the ith grid and the same with BSi, 
N is half length of each grid representation. 

Through [23] we can see the function 10 satisfies 
the group lower bound property if RLB_grid() is 
replaced by a square Euclidean distance in it. And 
according to Proposition 2, RLB_grid() lower 
bounds square Euclidean distance, thus it is obvious 
that LBGBR (Q, R) satisfied. We don’t do more 
redundant proof here. 

5.3 Indexing Time Series 

So far, the most important issues for indexing have 
been solved, then just following the GEMINI [22] 
paradigm, the approximate representations of time 
series can be indexed by a spatial access method. 
We build the index based on the R-tree structure 

[24]. In the index, each entry in an internal node 
consists of the approximate representation of a GBR 
and a pointer to a child node. On the other hand, an 
entry in a leaf node consists of the approximate 
representation of and a pointer to a time series data 
object. Following the R-tree algorithm proposed by 
Guttman [24], we can easily construct the index. 

6. EXPERIMENTAL EVALUATION 

We will provide an empirical comparison between 
our proposed grid representation approach and the 
art techniques such as PAA to demonstrate it 
improved performance. Since our proposed method 
is specialized in efficient computation, we measure 
the elapsed time of implementing k-NN similarity 
search.  

We used two data sets for the experiment, which are 
collected from various sources of real world 
applications and synthetic data. One data set is 
FOETUS_ECG data set from PhysioNet [26] and 
Pierre JALLON’s website [27], and the other one is 
a mixed data set generated from various sources like 
ocean, ERP, and financial applications. For each of 
them we created three cases with the length of time 
series is 1024, 512, 256, and each contains 10,000 
time series of the same length. And we reduce the 
dimensionality to 64, 32, and 16 respectively. 

 

 

 

 

 

 

 

 

 

 

Figure 10: comparison of GR and PAA in terms of 
elapsed time (seconds) for 5-NN search, (a) is for 
FOETAL_ECG data set and (b) is for the mixed 
data set. 

Figure 10 compares the Grid Representation (GR) 
and PAA techniques based on the elapsed time for 
5-NN search. The Grid Representation significantly 
outperforms the PAA technique. It is more efficient 
than PAA, which argues that grid representation is a 



   

completely competitive technique. 

7. CONCLUSION AND FUTURE 
WORK 

In this paper, we proposed a new dimensionality 
reduction technique, i.e. Grid Representation. We 
showed that it was more efficient by using a bitmap 
approach and easy for index building. In the future, 
we will use this technique to do more experiments 
on clustering or other application field. We also 
intend to extend the work to anomaly detection, 
which is like what [3] described. 
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