
DEWS2006 1C-i4

モデル検査によるアクティブデータベースルールの自動検証

崔 銀惠† 土屋 達弘†† 菊野 亨††

† 独立行政法人 産業技術総合研究所 システム検証研究センター
〒 560–0083 大阪府豊中市新千里西町 1–2–14 三井住友海上千里ビル 5F
†† 大阪大学大学院 情報科学研究科 〒 565–0871 大阪府吹田市山田丘 1–5

E-mail: †e.choi@aist.go.jp,††{t-tutiya,kikuno}@ist.osaka-u.ac.jp

あらまし アクティブデータベースは，システムの内外で起こる様々なイベントに対して定義されたルールに従って，

自ら能動的に処理を行うデータベースシステムのことを指す．アクティブデータベースの安全性を保証するためには，

設計するルールの振舞いを分析し，ルールの停止性を保証する必要がある．本研究では，アクティブデータベースルー

ルの停止性をモデル検査を用いて自動検証する手法を提案する．提案法では，まず，アクティブデータベースシステ

ムのモデル化を行う．この提案モデル化手法は，特定のルール実行方式やコンテキストに依存しないという特徴を有

する．次に，提案したモデルにモデル検査を適用することで停止性を含めたルールの振舞いを検証する．最後に，適

用実験を通して提案する検証法の有効性を示す．

キーワード アクティブデータベース，ルール，停止性，コンテキスト，モデル検査

Model Checking Active Database Rules

Eun-Hye CHOI†, Tatsuhiro TSUCHIYA††, and Tohru KIKUNO††

† Research Center for Verification and Semantics,
National Institute of Advanced Industrial Science and Technology (AIST),

5th Floor, Mitsui Sumitomo Kaijo Senri Bldg., 1–2–14 Shin-Senri Nishi, Osaka, 560–0083 Japan
†† Department Information Systems Engineering,

Graduate School of Information Science and Technology, Osaka University
1–5 Yamadaoka, Suita, Osaka, 565–0871 Japan

E-mail: †e.choi@aist.go.jp,††{t-tutiya,kikuno}@ist.osaka-u.ac.jp

Abstract An active database system is an autonomical database system that can react to events occurring inside

and outside of the database. A set of active database rules defines a reactive behavior of the active database system.

One of the most potential problems with active database systems is non-termination of active database rules. This

paper proposes an approach for automatically checking the termination of active database rules by a model checking

technique. In our approach, we give a general framework for modeling active database systems which can be useful

for analyzing rule behaviors under various execution semantics and contexts of active database rules. Based on the

proposed modeling framework, we model check the termination property of active database rules using a model

checking tool, SPIN. Through experimental results, we show the feasibility of the proposed method.

Key words Active Database, Rule, Termination, Context, Coupling Mode, Model Checking

1. Introduction

An active database [6], [12] is a database system that has a

functionality to react to events occurring inside and outside

of the database, while a traditional database responds only

to queries from users or applications outside of the database.

Since this extra functionality of an active database is helpful

to integrate reactive behavior of applications in a centralized

and timely manner, active database systems have received

attention from 1980s and a number of systems, e.g. Star-

burst [15], SQL-3 [10], HiPAC [5], and Chimera [3], have been

developed.

The reactive functionality of an active database system is

described by rules which have three components: an event,

a condition, and an action. The active database system

monitors and detects the events of rules and triggers rules

corresponding to the detected events. Consecutively, the ac-

tive database system evaluates the conditions of the triggered

rules, and executes the actions of the rules whose conditions

hold. Executing rules can trigger other rules and thus the

non-termination of active database rules is one of the most

potential problems in active database systems.

The behavior of active database rules depends on not only

a set of rules given to the system but also a strategy of rule

processing adopted by the system. For example, which point

of data is used as a context of rule processing and how soon

a rule is evaluated and executed in or out of transactions

depend on the rule processing strategy of an active database

system. Consequently, it is difficult to predict the behav-

ior and interactions of active database rules associated with

a given rule processing strategy. Therefore, an automatic

mechanism to analyze active database rules and verify de-

sired properties such as the termination of rules is indispens-

able.

In this paper, we propose an approach for automatically

verifying the termination and other safety properties of ac-

tive database rules by model checking [4], [8], [11]. Model

checking is an automated verification technique that can

exhaustively check whether a finite state transition system

satisfies a temporal logic formula or not. Given a system

modeled by a finite state transition system and a property

expressed by a temporal logic formula, verification of the

property for the system is automatically performed by using

existing powerful model checkers.

In our approach, we first give a modeling framework for

constructing an abstract model of an active database sys-

tem, which can be formally described and analyzed using

model checker SPIN [8]. We next explain how to verify the

termination and other safety properties of rules using the

constructed model by model checking. Since our modeling

framework is general in the sense that it is not limited to

a specific rule processing strategy, the proposed approach

can be commonly applied for analyzing rule behaviors with

different features of rule processing.

The rest of this paper is organized as follows: In Section

2., we introduce active database systems and model check-

ing with SPIN. The proposed modeling framework which can

deal with various execution semantics of rules is explained in

Section 3.. In Section 4., we describe how to verify the rule

behavior using the proposed modeling framework. In Section

5., we show the experimental results of applying the proposed

method for checking the termination property of an example

rule set under different features of rule processing. Finally,

related works and the conclusion are respectively given in

Sections 6. and 7..

2. Preliminaries

2. 1 Active Database System

An active database system contains a set of rules that de-

scribe desired reactive behaviors. An active database rule

consists of three components: an event, a condition, and an

action, with syntax ON[event] IF[condition] DO[action].

［Example 1］ Assume two data tables: ’Emp’ whose records

are employee’s ’id’ and ’rank’ and ’Bonus’ whose records

are employee’s ’id’ and ’amount’ of bonus. Consider the

two rules r1 and r2 in Figure 1. Rule r1 signifies that

whenever Emp(rank), a rank of an employee, is updated,

Bonus(amount), the amount of bonus of the employee, is in-

creased by 10 if Emp(rank) is even. Rule r2 signifies that

r1

ON update(Emp(rank))

IF Emp(rank) mod 2 = 0

DO update(Bonus(amount))

Bonus(amount) = Bonus(amount) + 10

r2

ON update(Bonus(amount))

IF TRUE

DO update(Emp(rank))

Emp(rank) = Emp(rank) + 1

Figure 1 Example Active Database Rules.

whenever Bonus(amount), an amount of bonus of an em-

ployee, is updated, Emp(rank), the rank of the employee, is

increased by 1. 1) 2

Active database rules are characterized by two models:

a knowledge model and an execution model [6], [12]. The

knowledge model describes the structural characteristics of

rules, while the execution model captures the runtime char-

acteristics of rule processing.

Characteristics of a knowledge model consist of the types

of events and actions, the contexts of conditions and actions,

etc. Types of an event include data modification (e.g. insert

and update), clock (e.g. at 13:00 on every Monday), etc.

A composition of events can also be regarded as an event.

Types of an action include data retrieval and modification,

transaction operation (e.g. commit or abort), an external

call, etc.

Characteristics of an execution model consist of conflict

resolution policy, scheduling policy, and coupling mode of

rules, etc. When multiple rules are triggered and activated

at the same time, a conflict of rules is often resolved by pri-

orities of rules, which are defined numerically or relatively.

Multiple rules are executed sequentially or in parallel.

In this paper, for the simplicity of modeling, we assume

that the type of events and actions of rules is only data

modification and that rules and transactions are executed

sequentially. These assumptions have also been made in pre-

vious works [1], [7], [13].

Once a set of rules are defined, an active database system

performs rule processing as follows (The following Event De-

tector, Condition Manager, Scheduler, and Query Evaluator

are principal facilities of active database systems [12].) :
• The Event Detector detects events and triggers the

rules associated with the events.
• The Condition Manager requests the evaluation of the

conditions of the rules, which were triggered by the event de-

tector, to the query evaluator. Rules whose conditions are

evaluated to true are stored in a conflict set.
• The Scheduler chooses a rule from the conflict set up-

dated by the condition manager according to the conflict

resolution policy and fires the rule.
• The Query Evaluator evaluates transaction queries

and conditions of rules requested from the condition manager

and executes actions of rules fired by the scheduler. When

evaluating transactions and conditions and actions of rules,

the query evaluator accesses not only the current state of the

1)：The definition of rules R1 and R2 in Figure 1 is implicit in the

sense that which tuples of tables are used for events, conditions, and

actions are not described in the definition. Such an abstraction is used

in definitions of active database rules, and explicit semantics of the

definitions are derived from rule description languages.

Table 1 Contexts.
Choices Condition-Context Action-Context

C1 DC DA

C2 DT DT

C3 DE DE

Table 2 Execution Coupling Modes.

Coupling Modes Event-Condition Condition-Action

M1 Immediate Immediate

M2 Immediate Deferred

M3 Deferred Immediate

M4 Deferred Deferred

database but also past states of the database if necessary.

The behavior of active database rules depends on the

knowledge and execution model of rule processing adopted

by the system. Among the characteristics of the knowledge

and execution model, contexts and coupling modes of rules

are particularly important factors to determine the termina-

tion of rules. Therefore, in this paper, we especially focus on

the contexts of rules in the knowledge model and the cou-

pling modes of rules in the execution model.

Context indicates which state of a database is used in the

rule processing. Here let DT , DE , DC , and DA denote the

states when the current transaction starts, the event occurs,

the condition is evaluated, and the action is executed, re-

spectively. In this paper, we consider the choices in Table 1

as contexts for the condition and for the action (denoted as

the condition-context and the action-context, respectively).

These contexts are actually used in existing active database

systems [3], [5], [10], [15].

Execution coupling mode consists of the event-

condition mode and the condition-action mode. The event-

condition mode determines when the condition is evaluated

after the corresponding event occurred. The condition-action

mode determines when the action is executed after the cor-

responding condition was evaluated. The following cou-

pling modes are supported in actual active database sys-

tems [3], [5], [10], [15]:
• Immediate, where the condition (action) is evaluated

(executed) immediately after the event (condition) of the

rule.
• Deferred, where the condition (action) is evaluated

(executed) anywhere within the same transaction as the

event (condition) of the rule.

In this paper, we consider the four choices in Table 2 for the

event-condition mode and the condition-action mode.2)

2. 2 Model Checking and SPIN

Model checking is a verification technique that exhaus-

tively checks whether or not a system modeled by a finite

state transition system satisfies a property expressed by a

temporal logic formula. Recently, model checking has be-

come more and more attractive since, given a transition sys-

tem and a temporal logic formula, model checking can be

automatically and rapidly performed by using existing pow-

erful tools. Model checking is also helpful to locate errors

of systems because, when a system model does not satisfy

a property formula, a counterexample that traces a system

2)：There is another useful coupling mode called Decoupled, where the

condition (action) is evaluated (executed) as a different transaction.

Modeling of this mode will be considered in future work.

behavior violating the property is output.

SPIN [8] is known as one of the most powerful model check-

ers. An input model to SPIN is described in Promela (Pro-

cess Meta-Language) which has C-like syntax. A Promela

model consists of one or more asynchronous processes with

data objects, non-deterministic constructs, and communica-

tion primitives. Processes can communicate via synchronous

and asynchronous message passing with buffered channels

or shared memory. SPIN verifies claims specified by Lin-

ear Temporal Logic (LTL) formulas or process invariants

which can express basic safety and liveness properties. SPIN

performs on-the-fly verification and supports several useful

state search and compression strategies. In our approach,

we adopt SPIN because of its powerful verification capabil-

ity and because an active database system can be naturally

modeled as an asynchronous process system in Promela.

3. Modeling of Active Database Systems

3. 1 Basic Modeling Framework

In this section, we give a modeling framework that de-

scribes an active database system. Figure 2 shows our ab-

stract model of an active database system.

States of the proposed model are determined from the

states of four kinds of data stores illustrated using circles

in the figure, DB, DB p, RuleBase, and ConflictSet, and

buffered channels ch query, ch event, ch cond, ch action. DB

and DB p respectively store the current state and past states

of the database. RuleBase maintains a set of rules defined in

the system, and ConflictSet maintains the current conflict set

of rules. Buffered channels ch event, ch cond, and ch action

store a list of detected events, a list of conditions to be eval-

uated, and a list of actions to be executed, respectively.

The proposed model consists of the following four processes

(illustrated using rectangles in the figure) : Manager, Sched-

uler, Evaluator, and Transaction. Process Manager models

a behavior of the event detector and the condition manager,

Process Scheduler models a behavior of the scheduler, and

Process Evaluator models a behavior of the query evaluator

of the active database system. Process Transaction models

users or applications that send transactions to the database

system.

The processes read and update the data stores and buffered

channels and also communicate with each other via syn-

chronous or asynchronous message passing using channels.

The behavior of each process is as follows:
• Process Transaction

This process generates transactions and sends each data

operation of the transactions to buffered channel ch query.

Process Evaluator will receive the operations of the trans-

actions via asynchronous message passing using the channel.

In the modeling, we allow a transaction to consist of multiple

data modification operations; but we have to fix the length

of transactions to ensure that the state model is finite.
• Process Manager

This process iterates the following procedure:

(1) Detect an event occurrence via asynchronous mes-

sage passing using buffered channel ch event.

(2) Trigger rules associated with the detected event by

referring to RuleBase.

(3) Request the evaluation of conditions of the triggered

rules to Process Evaluator. The identifier of the rule to be

���������
	�	
�������������
�������!

"#�$ %�'&(*),+

-/.�0 13254�687:9;73<>=*6?<A@CB;<EDF=*GIHA@
JLKNMPOQOSRUTSRNV D5WC<A@X@C4�Y;Z\[�]_^�` �$�ba�c

���������
	�	deZ\[��f `,g ���

h)i�XjlkSmn&(,op�A q3r�ks�ut_v$wx�

���������
	�	y �z����{|� Z|}L~�� �

h)��A�imI /mn)i�
��v��Av��'�,+

� 4E<X�C�
�_� �X<(=?4

� 4E<E� �_� �X<(=?4

�F�������
	�	��� � g�` � }�� �
"�t � 4E<X�C�

�_� �X<(=?4

"
t����
� 2E6%6?4�@�=���=?<�=?4�HC�'��<�=?<�95<(B;4

�$� 4�@�=���H�=�G �%G�DU<�=�GIH�@
JLKFMPO�O R;TSR¡V D5W5<�@X@C4AY
Z\['] � � �\� } c

-£¢�0 � HA@C��G¤=LGIH�@3=?H
9C4¥4 � <AYs2C<�=?4E�

JLKFMPO�OSR;TSRFV D5W5<�@X@54�Y
Z\[�]¦Z'� �_f�c

-l§\0 ¨_DF=�GIHA@©=?Hª9C4:4C«;4!D52�=?4E�
JLKFMPO�O¬RUTSRNV D(WC<A@E@54�Y
Z�[�] � Z|}L~%� �_c

­ <EBF=���=?<�=?4(B3H5����<(=?<A9C<(B�4

�$� <�Ys25<(=�GIHA@ � 4(B(2XY =
JLKNMPOQO RUTSRNV D5W5<�@X@C4�Y

®�¯±°i²�³X´(µ�¶�·�c

� 4X¸�2EGs6¹4�6%2EYI4�45«;4!D52;=*GIHA@
J D5W5<�@X@C4�Y ®F¯º°,´;®F¯x¶X»!¼U½Q¶!c

J D(WC<A@E@54�Y ²X®F¾b°�¶!¿¡²5½ À
²x®¡¾b°�¶FÁ!¶!c

Figure 2 Abstract Model of an Active Database System.

evaluated is buffered to channel ch cond.

(4) Evaluation results are received from Process Eval-

uator via asynchronous message passing using channel

ch answer. After receiving the evaluation results, add rules

whose conditions are evaluated to true to ConflictSet.

(5) Request the execution of rules in ConflictSet to Pro-

cess Scheduler via synchronous message passing using a chan-

nel denoted by ch schedule.
• Process Scheduler

This process chooses a rule nondeterministically among

the rules having the highest priority from ConflictSet and

sends a request to Process Evaluator to execute the action

of the rule. The identifier of the rule to be activated is sent

via asynchronous message passing using a buffered channel

denoted by ch action.
• Process Evaluator

This process evaluates the following three kinds of data op-

erations: operations of transactions requested from Process

Transaction, conditions of rules requested by Process Man-

ager, and actions of rules requested by Process Scheduler.

(a) Evaluation of operations of transactions: After re-

ceiving a transaction operation from channel ch query, evalu-

ate the operation and send a new event corresponding to the

operation to channel ch event. This evaluation procedure is

finished when receiving an acknowledgment message from a

synchronous channel called ack eval.

(b) Evaluation of conditions of rules: After receiving

identifiers of rules from channel ch cond, evaluate condi-

tions of the rules and send the evaluation result to channel

ch answer. This evaluation procedure is finished when re-

ceiving an acknowledgment message from a channel denoted

by ack exe.

(c) Execution of actions of rules: After receiving an

identifier of a rule from channel ch action, execute the action

of the rule and send a new event corresponding to the action

to channel ch event. This evaluation procedure is finished

when receiving an acknowledgment message from channel

ack eval.

To evaluate the above three kinds of operations, this pro-

cess accesses to data of DB and/or DB p. In the cases of (a)

and (c), a new event may occur after the evaluation. In these

cases, the acknowledgment is received from channel ack eval

after Process Manager noticed the new event and added rules

triggered by the event to ConflictSet. In the case of (b), the

acknowledgment is received from channel ack exe after Pro-

cess Scheduler sent an activated rule to channel ch action.

Waiting for the acknowledgment prevents each evaluation

procedure of (a), (b), and (c) from being interleaved with

other procedures.

3. 2 Modeling Different Execution Semantics

The basic framework for modeling an active database sys-

tem was proposed in Section 3. 1. The modeling framework

is applicable to various active database systems with differ-

ent knowledge and execution models of rules. Here, based

on the modeling framework, we explain how to model ac-

tive database systems with the contexts in Table 1 and the

coupling modes in Table 2.

First, as to the condition-context and the action-context,

we consider three choices C1, C2, and C3 in Table 1. In our

modeling framework, as shown in Figure 2, Process Evalu-

ator reads current and/or past states of the database when

evaluating data operations. Active database systems with

C1, C2, or C3 are then straightforwardly modeled by select-

ing the state of the database to be read by Process Evaluator

in our modeling framework as follows.

In the case of C1, DC , the state when the condition is eval-

uated, and DA, the state when the action is executed, are

respectively used for the condition-context and the action-

context. Hence, to model C1, we let Process Evaluator access

DB, that is, the current state of the database when evaluat-

ing conditions and executing actions.

In the case of C2, DT , the state when the transaction

starts, is used for the condition-context and the action-

context. Hence, to model C2, we store the state when the

current transaction starts in DB p and let Process Evalua-

tor access DB p when evaluating conditions and executing

actions.

In the case of C3, DE , the state when the correspond-

ing event occurs, is used for the condition-context and the

Table 3 Priorities of Channels under Different Coupling Modes.

Modes Priorities of Channels

M1 ch query < ch cond = ch action

M2 ¬T end → ch query = ch action < ch cond

T end → ch query < ch action < ch cond

M3 ¬T end → ch query = ch cond < ch action

T end → ch query < ch cond < ch action

M4 ¬T end → ch query = ch action = ch cond

T end → ch query < ch action = ch cond

action-context. To model C3, we store the state when each

event occurs in DB p. When evaluating a condition or an

action of a rule, we let Process Evaluator access the state of

DB p corresponding to the event of the rule.

Next, as to coupling modes, consisting of event-condition

and condition-action modes, we consider four choices M1,

M2, M3, and M4 in Table 2. In our modeling framework,

Process Evaluator performs the three kinds of evaluations:

(a) the evaluation of transactions, (b) the condition eval-

uation, and (c) the action execution. Operations for (a),

(b), and (c) are respectively received from buffered channels

ch query (from Process Transaction), ch cond (from Process

Manager), and ch action (from Process Scheduler). Active

database systems with M1, M2, M3, or M4 are then modeled

by assigning priorities to the three channels to determine the

order of receiving operations in Process Evaluator as shown

in Table 3.

In the case of M1, coupling modes for the event-condition

and the condition-action are Immediate, and thus the condi-

tion (the action) has to be evaluated (executed) immediately

after the event occurrence (the condition evaluation). Mode

M1 is modeled by giving a higher priority to channels ch cond

and ch action than to channel ch query.

In the case of M2, the event-condition mode is Immediate

and the condition-action mode is Deferred. Thus the condi-

tion has to be evaluated immediately after the event occur-

rence while the action has to be executed within the same

transaction. Mode M2 is modeled as follows: Since the event-

condition mode is Immediate, give a higher priority to chan-

nel ch cond than to channels ch action and ch query. T end

in the table denotes a boolean variable that is true during

the period after the current transaction were completed and

before the next transaction starts. Since the condition-action

mode is Deferred, give a higher priority to channel ch action

than channel ch query when T end is true. This guarantees

that the action is executed within the same transaction.

In the case of M3, the event-condition mode is Deferred

and the condition-action mode is Immediate. Mode M3 is

thus modeled similarly to the case of M2 in the following

way: Give a higher priority to channel ch action than to

channels ch cond and ch query. Give a higher priority to

channel ch cond than channel ch query when T end is true.

In the case of M4, the event-condition and the condition-

action modes are Deferred. Mode M4 is modeled by giving a

higher priority to channels ch cond and ch action than chan-

nel ch query when T end is true.

4. Verification of Active Database Rules

In order to verify the behavior of active database rules,

we first translate the proposed model described in Section 3.

to a Promela model and next model check termination and

safety properties of the Promela model using SPIN.

4. 1 Promela model of Active Database Rule Sys-

tems

The proposed model for active database systems can be

easily translated to a Promela model. Here we briefly il-

lustrate the translation of our model of an active database

system with example rule sets, R1 and R2, in Example 1 and

context C1 and coupling mode M1. The example Promela

code is given in Appendix A. (For details of the Promela

syntax, see [8].)

Lines 1–43 declares global variables.
• Variables emp rank and bonus amount respectively

represent the current values of records Emp(rank) and

Bonus(amount). In the example, for simplicity, we abstracted

a data model in such a way that tables Emp and Bonus con-

tains one tuple with a same employee’s id. (In the cases of

C2 or C3, DB p is necessary, and thus we prepare a buffered

channel which stores past states DT or DE of records.)
• Set of rules rules[N] and buffer of rules cs respec-

tively represent RuleBase and ConflictSet. User-defined

types event type and rule type respectively represent the

types of events and rules.
• Communication channels in Figure 2 and boolean vari-

able T end are prepared. Channels ch query, ch event,

ch cond, ch answer, and ch action are asynchronous com-

munication channels with a fixed size, while ch schedule,

ack eval, and ack exe are synchronous ones.

Lines 45–77 declares an initial process. The initial process

declares RuleBase rules and creates processes of Transac-

tion, Manager, Scheduler and Evaluator. Promela processes

are executed concurrently and scheduled nondeterministi-

cally. Using d step and atomic statements reduces a state

space by making statements to be executed without being

interleaved by other processes.

Lines 79–103 declares Process Transaction. This process

chooses a data operation of a transaction and sends it to

channel ch query. The last operation of a transaction is spe-

cially marked so that Process Evaluator can know the tail of

the current transaction. In the Promela execution seman-

tics, each statement is either blocked or executable. As for

do-statement and if-statement, if more than one statements

in them are executable, that is, guards of the statements are

true, one of the statements is nondeterministically selected

and executed. SPIN exhaustively explores all possible be-

haviors in checking the model. Process Transaction models

possible transactions by selecting operations of a transaction

nondeterministically.

Lines 105–174 declares Process Manager. When an event

is received from channel ch event, this process finds rules

in rules triggered by the event and sends identifiers of trig-

gered rules to channel ch cond. When evaluation results are

received from channel ch answer, this process sends to cs

the identifiers of rules whose conditions are true. After both

procedures, T end is set to false if cs, ch cond, and ch action

are empty, that is, there are no rules to be evaluated or ex-

ecuted; otherwise a request of scheduling is sent to channel

ch schedule.

Lines 176–197 declares Process Scheduler. When a request

of scheduling is received from channel ch schedule, this pro-

cess nondeterministically chooses a rule from cs and sends

the identifier of the rule to channel ch action. Nondetermin-

istic receive operation from a buffered channel is described

using operator ’??’ in Promela.

M1 M2 M3 M4

C1 True True False False

C2 False False False False

C3 True True True True

M1 M2 M3 M4

C1 Time(s) 0.320 0.400 0.160 1.370

Memory(Mbyte) 325.886 326.910 324.657 339.505

C2 Time(s) 0.030 0.030 0.050 0.030

Memory(Mbyte) 322.302 322.302 322.302 322.302

C3 Time(s) 0.450 0.710 0.700 0.890

Memory(Mbyte) 327.934 331.723 331.62 333.976

(a) Termination Property (b) Time and Memory needed for Model Checking

Figure 3 Experimental Results.

Lines 199–262 declares Process Evaluator. This process

receives data operations from channels ch query, ch cond

and ch action, and evaluates those operations received. Re-

ceiving order from the three channels follows the channel

priority as explained in Section 3. 2. In the case of M1, the

channel priority is ch query < ch cond = ch action and this

is described as Lines 205, 225, and 241. (Promela models for

M2–M4 are easily obtained by changing the lines according

to the channel priorities in Table 3.)

4. 2 Termination Checking

In our Promela model of an active database system, we

can easily express the termination property of rules using a

progress label of Promela, as described in Lines 140 and 164

of Promela code in Appendix A.

137 if
138 :: T_end==1 && (len(ch_cond)==0)
139 && (len(ch_action)==0) ->
140 progress1: T_end = 0
141 :: else -> skip
142 fi;

In SPIN, progress is a label name for specifying liveness

properties; a statement marked by the progress label is re-

quired to be visited infinitely in any infinite execution se-

quence. In our Promela code, the statements labeled with

progress are executable if and only if there remain no rules

to be evaluated or executed, and this means that the rule

processing is terminated. If there is an execution sequence

where the rule processing is never terminated, the statement

labeled with progress is not visited and then SPIN detects

an error and reports the counterexample execution sequence.

［Example 2］ Appendix B shows the result of model check-

ing whether there are non-progress execution cycles for the

example Promela model in Appendix A. The result shows

that, for the example model, no error is detected and thus

rules R1 and R2 under Context C1 and Coupling mode M1

satisfy the termination property. (Note that, for the rules

R1 and R2, a previous static checking method in [1] detects

a potential non-termination.) 2

SPIN verifies claims specified by LTL [9] formulas in addi-

tion to process invariants. Therefore, other desirable safety

properties can also be checked using our Promela model.

For example, suppose that Query Evaluator must answer

requests from Condition Manager in active database sys-

tems. In our model, this property is expressed using LTL as

follows: [] (nempty(ch cond) -> <> nempty(ch answer)).

The property can then be verified using SPIN.

5. Experiment

In the experiment, we checked the termination property of

the example rules, R1 and R2, in Example 1 under differ-

ent contexts and coupling modes by applying the proposed

method.3) First, we generated Promela models for every pairs

of contexts C1–C3 and coupling modes M1–M4 as explained

in Section 4.. Next, we checked the Promela models using

SPIN. For model checking, we used a Linux workstation with

Intel Xeon 3.0GHz and 4GB memory.

Figure 3 shows the experimental results. Figure 3-(a)

shows the result of model checking the termination prop-

erty for each pair of contexts and coupling modes. From the

result, one can know that whether a rule set satisfies the ter-

mination property or not depends on the contexts and the

coupling modes considered. As for the cases where the error

is detected by model checking, we could specify a counterex-

ample trace of rule processing that violates the termination

property.

Figure 3-(b) shows the time and memory required for the

model checking. For all cases, the needed time was less than

1.5 seconds while the memory size actually used was around

330 Mbytes.

6. Related Work

In general, detecting termination of active database rules

is an undecidable problem, and most previous works on an-

alyzing active database rules have been focused on static

analysis [1], [2], [14]. Such static works have provided prin-

cipal conditions for termination of rules (e.g. acyclicity of

a triggered graph of rules) but are not convenient to pre-

dict and specify undesirable behavior of rules under actual

database systems.

Model checking has been applied for active database rule

analysis in two previous works [7], [13]. However, the general

modeling framework applicable to active database systems

with different execution semantics has not considered so far.

In [7], T. S. Ghazi and M. Huth presented an abstract

modeling framework for active database management sys-

tems and implemented a prototype of a Promela code gen-

erator. In their modeling, an active database system was

simply modeled as two concurrent processes called system

and environment. In their model, how to model data and

data operations for the query evaluation, the condition eval-

uation, and the action execution were not addressed.

In [13], I. Ray et al. presented the verification of the termi-

nation of rules using model checker SMV [11]. Their model-

ing assumed only specific execution semantics for rules where

a transaction consists of a single data operation, the rule pro-

cessing is performed only after a transaction committed, and

contexts for the condition and the action are limited to the

current state of data.

3)： In [1], [7], [13], for almost same rules as R1 and R2, termination

checking has been performed assuming a specific context and coupling

mode.

7. Conclusion

The contribution of this paper is that we proposed a new

method to model check active database rules with different

contexts and coupling modes. We first proposed the model-

ing framework which is applicable to various active database

systems with different contexts and coupling modes of rules.

We next presented how to translate our model to Promela

and check the rule behavior using the model by SPIN model

checking. Finally, through the experiment using example

rules, we showed that the proposed method can efficiently

check the termination of the rules with different contexts

and coupling modes. To the best of our knowledge, this is

the first time that the termination of rules has been checked

for the cases of contexts C2–C3 and coupling modes M2–M4.

The main difficulty of model checking active database rules

is how to make a fine finite state model representing the be-

havior of active database rules. Since general model checking

tools can handle finite state models that do not raise state

explosion, it is necessary to make an efficient finite abstrac-

tion of an active database system model. Our future work

includes the evaluation of the applicability of the proposed

model to actual active database rules with practical size.

Model checking and other formal analysis of an infinite be-

havior model of active database rules is also an interesting

topic of our further study.

References

[1] A. Aiken, J. M. Hellerstein, and J. Widom. Static analy-

sis techniques for predicting the behavior of active database

rules. ACM Transactions on Database Systems, 20:3–41,

1995.

[2] E. Baralis, S. Ceri, and S. Paraboschi. Improved rule analy-

sis by means of triggering and activation graphs. In T. Sellis,

editor, Rules in Database Systems, pages 165–181. Springer-

Verlag, 1995.

[3] S. Ceri, P. Fraternali, S. Paraboschi, and L. Tanca. Active

rule management in chimera. In J. Widom and S. Ceri,

editors, Active Database Systems, pages 151–176. Morgan

Kaufmann Publishers, 1996.

[4] E. M. Clarke, O. Grumberg, and D. Peled. Model Checking.

MIT Press, 1999.

[5] U. Dayal. Active database management systems. In Pro-

ceedings of the Third International Conference on Data and

Knowledge Bases, 1988.

[6] K. R. Dittrich, S. Gatziu, and A. Geppert. The active

database management system manifesto: A rulebase of

adbms features. In Proceedings of the 2nd International

Workshop on Rules in Database Systems, pages 3–20, 1995.

[7] T. Ghazi and M. Huth. An abstraction-based analysis

of rule systems for active database management systems.

Technical report, KSU-CIS-98-6, 1998.

[8] G. J. Holzmann. The model checker SPIN. IEEE Trans.

Softw. Eng., 23(5):279–295, 1997.

[9] M. R. A. Huth and M. D. Ryan. Logic in Computer Sci-

ence - Modelling and reasoning about systems. Cambridge

University Press, 2000.

[10] K. Kulkarni, N. Mattos, and R. Cochrane. Active database

features in sql3. In N. Paton, editor, Active Rules in

Database Systems, pages 197–219. Springer-Verlag, 1999.

[11] K. L. McMillan. Symbolic Model Checking. Kluwer Aca-

demic, 1993.

[12] N. W. Paton and O. Diaz. Active database systems. ACM

Computing Surveys, 31(1):63–103, 1999.

[13] I. Ray and I. Ray. Detecting termination of active database

rules using symbolic model checking. In Proceedings of the

Fifth East-European Conference on Advances in Databases

and Information Systems, 2001.

[14] L. van der Voort and A. Siebes. Termination and conflu-

ence of rule execution. In Proceedings of the second inter-

national conference on Information and knowledge man-

agement, pages 245–255, 1993.

[15] J. Widom and S. J. Finkelstein. Set-oriented production

rules in relational database systems. In Proceedings of SIG-

MOD’90, pages 259–270, 1990.

Acknowledgments

Authors would like to thank to anonymous referees for

their helpful suggestions and comments.

Appendix

A. Example Promela Program

1 #define num_R 2 /*number of rules*/
2 #define num_CS 4 /*size of the conflict set*/
3 #define N 2 /*maximum number of operations in a transaction*/

4 #define M 2 /*maximum number of transitions*/
5 #define size_buffer 4 /*size of buffered channels*/
6
7 mtype = {update,emp,rank,bonus,amount};

8
9 byte emp_rank; /*current value of Emp(rank) in DB*/

10 byte bonus_amount; /*current value of Bonus(amount) in DB*/

11
12 typedef event_type{ /*type of events*/

13 mtype operation;

14 mtype table;

15 mtype field;

16 byte m;

17 };
18
19 typedef rule_type{ /*type of rules*/

20 event_type event;

21 bool condition;
22 event_type action;

23 };

24 rule_type Rules[num_R]; /*RuleBase: Set of rules*/

25
26 chan CS = [num_CS] of {byte}; /*ConflictSet*/

27
28 /*channels*/
29 chan ch_query = [1] of {bool,mtype,mtype,mtype,byte};

30 /*{1 iff end of transaction,operation,table,field,value}*/

31 chan ch_event = [1] of {mtype,mtype,mtype,byte};

32 /*{operation,table,field,value}*/

33 chan ch_cond = [size_buffer] of {byte}; /*{rule-id}*/

34 chan ch_answer = [size_buffer] of {byte,bool};

35 /*{rule-id,evaluation-result}*/

36 chan ch_schedule = [0] of {bool};

37 chan ch_action = [size_buffer] of {byte}; /*{rule-id}*/

38
39 chan ack_eval = [0] of {bool};

40 chan ack_exe = [0] of {bool};
41
42 bool T_end;

43 /*TRUE after queries of the current transition were completed*/

44
45 init
46 {
47 /*declare RuleBase*/
48 d_step{

49 Rules[0].event.operation = update;

50 Rules[0].event.table = emp;

51 Rules[0].event.field = rank;

52 Rules[0].event.m = 1;

53 Rules[0].condition = 1;

54 Rules[0].action.operation = update;

55 Rules[0].action.table = bonus;

56 Rules[0].action.field = amount;

57 Rules[0].action.m = 10;
58
59 Rules[1].event.operation = update;

60 Rules[1].event.table = bonus;

61 Rules[1].event.field = amount;

62 Rules[1].event.m = 1;

63 Rules[1].condition = 0;

64 Rules[1].action.operation = update;

65 Rules[1].action.table = emp;

66 Rules[1].action.field = rank;

67 Rules[1].action.m = 1;

68 };
69
70 /*run processes*/

71 atomic{
72 run Transaction();

73 run Manager();

74 run Scheduler();

75 run Evaluator()

76 }
77 }
78
79 proctype Transaction(){

80
81 byte n; /*current number of operations in a transaction*/

82 byte m; /*current number of transactions*/

83 bool tail; /*TRUE for the last operation of a transaction*/

84
85 end:do
86 :: m<M ->
87 atomic{
88 n++;
89 if
90 :: n<N -> tail=0 /*not tail of a transaction*/
91 :: n<=N -> tail=1; n=0; m++ /*tail of a transaction*/
92 :: else -> skip

93 fi;

94 /*select a data operation nondeterministically and

95 buffer it as a query of a transaction to ch_query*/

96 if
97 :: ch_query!tail,update,emp,rank,1

98 :: ch_query!tail,update,bonus,amount,1

99 fi
100 }
101 :: break
102 od
103 }
104
105 proctype Manager(){

106
107 mtype ev_operation,ev_table,ev_field;

108 byte ev_m, i;

109 bool trg; /*TRUE if any rule is triggered*/

110 bool result; /*evaluation result*/
111 end:do
112 :: ch_event?ev_operation,ev_table,ev_field,ev_m;

113 /*receiving an event*/

114 atomic{
115 i=0; trg = 0;

116 do /*find Rules triggered by the event*/

117 :: (i<num_R)->
118 if
119 :: ev_operation==Rules[i].event.operation

120 && ev_table==Rules[i].event.table
121 && ev_field==Rules[i].event.field ->
122 /*request condition evaluation to Evaluator*/

123 ch_cond!i; trg = 1;

124 i++
125 :: else -> i++
126 fi
127 :: (i>=num_R) -> break
128 od;

129 };
130 if
131 :: (trg==0) ->

132 /*if ConflictSet is empty and no rules to be evaluated

133 or executed remain, set T_end to FALSE,

134 otherwise call Scheduler*/
135 if
136 :: empty(CS) ->

137 if
138 :: T_end==1 && (len(ch_cond)==0)
139 && (len(ch_action)==0) ->
140 progress1: T_end = 0

141 :: else -> skip

142 fi;
143 ack_eval!1
144 :: nempty(CS) -> ch_schedule!0

145 fi
146 :: else -> ack_eval!1
147 fi
148 :: nempty(ch_answer) -> /*receiving evaluation results*/

149 atomic{
150 do
151 /*add rules evaluated to true to ConflictSet*/
152 :: nempty(ch_answer) ->

153 ch_answer?i,result;
154 if
155 :: result -> CS!i
156 :: else -> skip

157 fi
158 :: empty(ch_answer) -> break

159 od
160 };

161 /*if ConflictSet is empty and no rules to be executed

162 remain, set T_end to FALSE, otherwise call Scheduler*/
163 if
164 :: empty(CS) ->

165 if
166 :: T_end==1 && (len(ch_action)==0) ->
167 progress2: T_end = 0

168 :: else -> skip

169 fi;
170 ack_exe!1
171 :: nempty(CS) -> ch_schedule!1

172 fi
173 od
174 }
175
176 proctype Scheduler(){

177
178 byte id; /*id of a rule to be executed*/

179 bool b;
180
181 end:do
182 /*nondeterministically choose a rule to be executed

183 from ConflictSet and send a request to Evaluator*/

184 :: atomic

185 {
186 ch_schedule?b ->
187 do
188 :: nempty(CS) -> CS??id; ch_action!id

189 :: empty(CS) -> break

190 od;
191 if
192 :: b==0 -> ack_eval!1
193 :: b==1 -> ack_exe!1
194 fi
195 }
196 od
197 }
198
199 proctype Evaluator(){

200
201 mtype ev_operation,ev_table,ev_field;

202 byte ev_m;

203 byte id; /*id of a rule to be evaluated or executed*/

204 bool tail;
205
206 end:do
207 :: /*(a) evaluation of query*/

208 nempty(ch_query) && empty(ch_cond) && empty(ch_action)

209 ->
210 atomic{
211 /*receiving a query from Transaction*/

212 ch_query?tail,ev_operation,ev_table,ev_field,ev_m;

213 /*if the query is the tail of the transaction,

214 set T_end to 1*/
215 if
216 :: tail -> T_end = 1
217 :: else -> skip

218 fi;

219 /*evaluate the query and notice an event to Manager*/

220 if
221 :: ev_table==emp -> emp_rank = emp_rank+ev_m

222 :: ev_table==bonus ->
223 bonus_amount = bonus_amount+ev_m
224 :: else -> break
225 fi;
226 ch_event!ev_operation,ev_table,ev_field,ev_m;

227 ack_eval?1
228 }
229 :: /*(b) evaluation of condition*/
230 nempty(ch_cond) ->

231 atomic{
232 do
233 /*receiving the id of a rule to be evaluated*/

234 :: empty(ch_cond) -> break

235 :: nempty(ch_cond) ->

236 ch_cond?id;

237 /*evaluate the condition and send the result*/
238 if
239 :: id==0 -> ch_answer!id,(emp_rank % 2 == 0)

240 :: id==1 -> ch_answer!id,1
241 fi
242 od;
243 ack_exe?1
244 }
245 :: /*(c) execution of action*/
246 nempty(ch_action) ->

247 atomic{
248 /*receiving the id of a rule to be executed*/

249 ch_action?id;

250 /*execute the action and notice an event to Manager*/

251 if
252 :: id==0 -> bonus_amount = bonus_amount+1
253 :: id==1 -> emp_rank = emp_rank+1

254 :: else -> break
255 fi;

256 ch_event!Rules[id].action.operation,

257 Rules[id].action.table,Rules[id].action.field,

258 Rules[id].action.m;
259 ack_eval?1
260 }
261 od
262 }

B. Example Output of SPIN

% ./pan -l

(Spin Version 4.2.6 -- 27 October 2005)

+ Partial Order Reduction
Full statespace search for:

never claim +
assertion violations + (if within scope of claim)

non-progress cycles + (fairness disabled)

invalid end states - (disabled by never claim)

State-vector 156 byte, depth reached 808, errors: 0

27741 states, stored (41570 visited)
73537 states, matched

115107 transitions (= visited+matched)
127857 atomic steps

hash conflicts: 1445 (resolved)
Stats on memory usage (in Megabytes):

4.550 equivalent memory usage for states (stored*(State-vector + overhead))

3.877 actual memory usage for states (compression: 85.21%)

State-vector as stored = 132 byte + 8 byte overhead

2.097 memory used for hash table (-w19)

320.000 memory used for DFS stack (-m10000000)

319.824 other (proc and chan stacks)

0.088 memory lost to fragmentation

325.886 total actual memory usage

