講演番号:18

主観的幸福度調査用ソフトウェアキーボードの開発

H-1Development of a Software Keyboard for Positive Psychology Interventions

西澤 和真

木下 雄一朗

郷 健太郎

Kazuma NISHIZAWA Yuichiro KINOSHITA Kentaro GO

山梨大学工学部

Faculty of Engineering, University of Yamanashi

はじめに

ポジティブ心理学の研究と実践の領域では,幸福度を向 上させるような介入を実現している. しかし, ポジティブ心理 学的介入は専門家の指導の下で行われるなど, その実行負 荷が非常に大きい. そこで本研究では, 文字入力作業によっ てポジティブ心理学的介入を行う、という着想をもとに、この 支援システムを開発する.

本目的を達成するため, 文字入力時のタッチデータとユー ザの主観的幸福度の評価値を収集可能なスマートフォン用 のソフトウェアキーボードを開発する. 本キーボードを使って ポジティブな文とネガティブな文を入力してもらうことで,入力 内容によってタッチデータや主観的幸福度が変化するかどう かを検証することを目指す.

ソフトウェアキーボードのデザイン

スマートフォンでの文字入力におけるタッチデータを収集 するために、Android OS 上で動作する IME アプリケーション を実装した(図 1 a). 本 IME では OS に標準搭載されている IME と同様に、日本語と英字アルファベット、数字、記号を入 力することができる.

Start (380,104) time:0 touch: time:34 touch: (307,92) (257,91) time:51 touch: (257,91) time:68 touch: (196,99) time:85 touch: (158,108) time:98 touch: (158,108) time:100 input: เา

(a) IME アプリケーション (b) 出力例 図 1 データ収集用 IME アプリケーション

本アプリケーションでは、文字入力時のタッチ座標とタッチ 時刻、入力された文字を計測して指定されたファイルに保存 する(図 1 b). これらのデータからフリック速度や入力速度を 算出して分析を行う.

ポジティブ・ネガティブ文集合の作成

文字入力の評価では、課題文の転記作業を実験タスクと する. 本研究ではポジティブ心理学的介入を行うため, その 規準として、ポジティブ文とネガティブ文から構成された課題 文集合が必要である. そこで課題文作成ワークショップを実 施した.

3.1 作成手順

4 名 1 組で 30 分間のワークショップを行い、ポジティブな 文とネガティブな文をできるだけ多く創出してもらう.

全グループのワークショップ終了後, 提示されたすべて

の文に対して参加者全員に評価をしてもらう. 評価は「非 常にネガティブ(評価値:-3)」から「非常にポジティブ(3)」 までの 7 段階尺度で行う. 全参加者の評価値の中央値 が 2.0 以上のものをポジティブな文とし、-2.0 以下のもの をネガティブな文として記録する.

3.2 実験結果

ワークショップには大学生8名(女性1名,平均年齢 21.9, sd = 0.33) が参加した. ワークショップの結果, 124 件のポジティブな文とネガティブな文の候補が提示され た. これらの文の評価の結果, ポジティブ文 34 件, ネガ ティブ文 40 件が文集合に追加された(例:表 1).

表 1 収集されたポジティブ文とネガティブ文の例

文例	評価値(中央値)
宝くじが当たった	3.0
君は天才だ	2.5
部屋が寒い	-2.0
カギをなくした	-3.0

実験用アプリケーション

構築した IME アプリケーションと文集合を組合せて, タ スクを実行するためのアプリケーションを実装した(図 2). 本アプリケーションは, 文集合から無作為に選んだ文を 表示する(図 2 a). 参加者は, 前述した IME アプリケー ションを使って、表示された文を転記して NEXT ボタンを 押す.この作業を繰り返す.

(a) 転記タスク画面

(b) 質問紙画面 図 2 実験用アプリケーション

参加者が 10 文を転記するごとに、質問紙画面が表示 される(図 2 b). ここでは野口ら[1]と同様に, 15 種類の 感情について5段階のリッカート尺度で回答する.

おわりに

文字入力は情報端末上で日常的に行われる情報行 動であるため, 実行負荷を軽減した介入が期待できる. 今後は、実験用アプリケーションを使用して、介入を行っ ていく予定である.

参考文献

[1] 野口ら,情処学 HCI 研報, vol. 15, pp. 1-8, 2012.