超小型深宇宙探査機 PROCYON 搭載アンテナの電気特性測定結果

B-2Radiation Characteristics of Onboard X-band Antennas for PROCYON 玉木 雄二*1 小林 岳彦*1 冨木 淳史*2 PROCYON 実証チーム

Yuzo Tamaki^{*1}, Takehiko Kobayashi^{*1}, Atsushi Tomiki^{*2}, and Flight demonstration team of PROCYON *2 宇宙航空研究開発機構 宇宙科学研究所 *1 東京電機大学 ワイヤレスシステム研究室

*1 Wireless Systems Laboratory, Tokyo Denki University *2 Institute of Space and Astronautical Science, JAXA.

1. まえがき

2014年12月に JAXA が打ち上げた超小型深宇宙探 査機 PROCYON には、表 1 および図 1 に示すような X 帯のアンテナが搭載されている. アンテナ単体およ び探査機構体を模擬したモックアップに搭載した状 態での電気特性測定結果を報告する.

各測定は電波暗室内でベクトルネットワークアナ ライザ (VNA) を用いて行った. 放射指向性は, 右旋 円偏波アンテナと対向させて VNA で測定した、偏波 の軸比は、直線偏波アンテナ(3アンテナ法で利得を 校正した DRH (Double-ridged waveguide horn) アン テナ)を用いて偏波パターン法[1]により測定し、計 算により円偏波利得を求めた.

2. 測定結果

各アンテナの VSWR の測定結果は、帯域内において 1.3以下であり、不整合による損失は最大で 0.07 dB である. モックアップに取り付けたことによる変化 は見られなかったが、XLGA に個体差が見られた.

XHGA および XMGA の正面利得,電力半値角,および XPD を表 2 に示す. XHGA の電力半値角は PROCYON の 姿勢制御精度 0.3° より十分広いため,姿勢変動によ る利得の変動は小さい. XMGA は太陽電池パネルでの 発電量を考慮し,通常は電力半値角内で使用される.

XLGA は、モックアップに取り付けたことで図2に 示すように軸比が劣化した. また, 太陽電池パネル のある面はより大きな影響を受けた. 8.4 GHz 帯の XLGA1, 2でも同様の傾向が見られた. 図3に示す放 射指向性にも影響があり、 利得平坦部のリプルが大 きくなったほか、太陽電池パネルや探査機構体の影 になる方向では、±90°を超えたあたりからの利得 の落ち込みが急峻になった. PROCYON は, 低利得アン テナ (XLGA) を太陽電池パネルの面とその対の面の両 方に持つことで、探査機の姿勢によらず通信が可能 になるよう設計されている. クロスオーバーポイン トでの利得は-3.5 dBi (7.19 GHz), -4.7 dBi (8.44 GHz) であった. ゆえに、YZ 平面上では探査機の角度 によらずこれ以上の利得が確保される.

3. 不確かさの見積もり

3 アンテナ法で校正した DRH アンテナの利得の不 確かさを, 測定系の誤差, アンテナ設置の誤差, およ び 3 アンテナ法の誤差に関する 11 項目の誤差要因 [2]について評価した. その結果, DRH アンテナの拡 張不確かさ(信頼水準95%)は±0.56 dBであった. また、これを用いて利得を測定した XHGA および XLGA の拡張不確かさは、それぞれ±0.70 dB, ±0.77 dB であった.

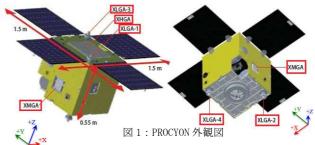


表 1: PROCYON 搭載アンテナ

アンテナ名	アンテナ形式	偏波	重量[g]
XHGA	無給電素子付64素子円形パッチアレー	RHCP	1300
XMGA	無給電素子付4素子円形パッチアレー	RHCP	81
XLGA1, 2	誘電体カバー付4線ヘリカル	RHCP	180
XLGA3, 4	誘電体カバー付4線ヘリカル	RHCP	200

表 2: XHGA および XMGA の測定結果

アンテナ名・	正面利得[dBi]		電力半値角[deg]		XPD[dB]	
	7. 19 GHz	8.44 GHz	7.19 GHz	8.44 GHz	7. 19 GHz	8.44 GHz
XHGA	24. 4	24.0	8.4	7. 2	16.7	27. 9
XMGA	13.7	12.8	30.5	24.6	23.3	18.5

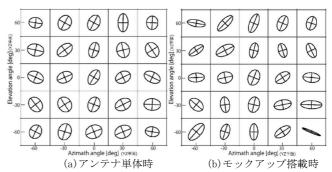


図2:低利得アンテナ(XLGA3)軸比測定結果(7.19 GHz)

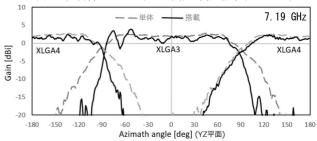


図3:低利得アンテナの放射指向特性(XLGA3,4)

4. まとめ

PROCYON 搭載アンテナの電気特性を実測し,利得測 定の不確かさを評価した。低利得アンテナをモック アップに取り付けて測定したところ, 軸比の劣化や 放射指向特性の変化が確認された.

参考文献

- [1] J. D. Kraus, Antennas, 2nd ed., McGraw-Hill, New York, 1988, pp. 835-839
- 坂齊 誠, 增沢博司, 藤井勝巳, 鈴木晃, 小池国正, 山中幸雄, "1~18GHz 帯ホーンアンテナ較正における測定の不確かさの 評価,"情報通信研究機構季報, vol. 52, no. 1, pp. 23-22, 2006.