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Abstract—Cultured neurons in vitro quickly connect to
one another to establish a spontaneously active network
within a week. The resulting neuronal network is char-
acterized by a combination of excitatory and inhibitory
integrate–and–fire units coupled through synaptic connec-
tions, and that interact in a highly nonlinear manner. The
nonlinear behavior emerges from the dynamics of both the
neurons’ membrane potential and synaptic transmission,
together with intrinsic biological noise. These ingredients
give rise to a rich repertoire of phenomena that are still
poorly understood, including periodic spontaneous activ-
ity, avalanches, propagation of activity fronts, and synchro-
nization. Here we describe some experimental results on
spontaneous activity in cultures, and elaborate on theoreti-
cal models that describe its initiation and maintenance.

1. Introduction

Neuronal activity in the mammalian brain is a promi-
nent example of how individual units (neurons) interact to
achieve a larger goal or function. The processing of exter-
nal information and the interaction between different brain
circuits gives rise to a wide range of dynamical processes
that are crucial for learning, memory, and behavior. The
interaction between neurons is based on the ability of one
neuron to evoke (excitatory neurons) or inhibit (inhibitory
neurons) the generation of action potentials in the neurons
that they connect to, generally via synapses.

Neuronal interactions are embedded in such an intricate
network of connections that relating a particular brain pro-
cess or function to the underlying neuronal activity is not
only a difficult task, but also one of the major challenges of
modern neuroscience [1]. A first step in the quest for under-
standing the interplay activity-connectivity-function con-
sists in the identification of the mechanisms behind sponta-
neous activity. Rhythmic spontaneous episodes of activity
are widespread in neuronal tissues, for instance in the form
of brain rhythms [2], retinal waves or spinal cord bursting.
Spontaneous activity plays a pivotal role in diverse brain
tasks, and is crucial for the correct formation, survival and
refinement of neuronal circuits.

Spontaneous activity is not only limited to naturally-

Figure 1: Neuronal cultures. (A)-(B) Neurons grown on a
glass cover slip, showing a bright field (left) and calcium
fluorescence (right) images. Circular objects in (A) and
bright spots in (B) are neurons. (C) Culture on a Multi-
Electrode Arrays system. (D) One-dimensional neuronal
culture on a pre-patterned line 170 µm wide and 12 mm
long. Scale bar is 100 µm.

formed neuronal tissues. Brain slices are also sponta-
neously active and even retain some of the dynamical traits
of the original tissue. Furthermore, the dissociation, plating
and culture of circuits as diverse as cortical or hippocampal
brain areas, retina or spinal cord, lead to networks that self-
organize, grow and mature to constitute a spontaneously
active network [3].

The robust presence of spontaneous activity in such a
dramatically diverse neuronal circuits hints at the presence
of general mechanisms —in both neuronal dynamics and
connectivity— that initiate and control it. Based on exper-
imental observations in neuronal cultures, here we discuss
on these mechanisms and their role in shaping spontaneous
activity in neuronal networks.

2. Experiments

Neuronal cultures (Fig. 1) have become one of the most
attractive in vitro systems to study spontaneous activity [3].
Cultures are typically prepared from specific regions of em-
bryonic rat brains, and after dissociation and plating. Neu-
rons connect within a day, and show rich spontaneous ac-
tivity as early as day in vitro (DIV) 5-6 [4].

Activity in cultures is typically monitored through Cal-
cium Fluorescence Imaging (Fig. 1A-B), which can simul-
taneously record thousands of neurons in large areas at ∼10
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Figure 2: Activity in unidimensional neuronal cultures.
(A) Spontaneous activity recorded through calcium fluo-
rescence imaging at 100 frames/s, averaged over the net-
work. Fluorescence peaks are bursting episodes, each of
them corresponding to the generation and propagation of
an activity front. (B) Fluorescence image of a region of the
culture depicting two Regions of Interest (ROIs) and the
advance of a propagating front, which crosses the field of
view from right to left at 70 mm/s. Color coding is pro-
portional to fluorescence amplitude. (C) Determination of
the propagation velocity within a burst by calculating the
time-delay in neuronal activation between two ROIs, a and
b. Fluorescence amplitude is shown normalized respect to
the baseline F0, with ∆F = F − F0.

ms resolution, or through Multi-Electrode Arrays (MEAs)
(Fig. 1C) [3], which deliver high, ∼µs resolution but with
a limited number of recording sites, on the order of 100.
Spontaneous activity in cultures is characterized by burst-
ing episodes of collective neuronal activation combined
with quieter inter-bursts intervals (Fig. 2A).

One of the simplest experimental systems to study the
initiation and propagation of spontaneous activity is unidi-
mensional neuronal cultures. They are obtained by setting
up a dimension of the culture much smaller than the char-
acteristic diameter of the neuron’s dendritic tree (around
300 µm). Unidimensional cultures were introduced in Refs.
[5, 6] by chemically constraining the growth of the neurons
to a narrow band of about 200 µm wide (Fig. 1D). As an ex-
ample, we consider here an alternative approach based on
the confinement of neurons and connections in topograph-
ical molds, with neurons growing only in a long, narrow
valley carved on a polymer (Fig. 2B).

Spontaneous activity in 1D cultures is characterized by
pulses (bursts) of neuronal activity that initiate in localized
zones along the line, termed burst initiation zones. The
velocity of a propagating pulse (Fig. 2B) is determined by
measuring the difference in activation times along consec-
utive regions in the line, as shown in Fig. 2C.

The experiments described in Refs. [5, 6] show that ac-
tivity fronts propagate at constant velocity, sequentially ac-
tivating the neurons in their path. Axons grow roughly par-

allel to the line and therefore neurons easily connect to their
neighbors, forming a chain-like network that extends with
equal probability towards both ends of the line. A detailed
analysis of the properties of initiation and propagation of
activity shows that, on one hand, the velocity of the activ-
ity front predominantly depends on the connectivity prop-
erties of the network [5]. For instance, networks with both
excitatory and inhibitory neurons provide velocities around
60 mm/s, which almost double when inhibition is blocked.
On the other hand, the existence of localized burst initiation
zones is ascribed to both a stronger connectivity and recur-
rent network activity at the vicinity of the initiation zone
[6]. These results evidence that the initiation and propaga-
tion of spontaneous activity depends on a subtle interplay
between neuronal dynamics and connectivity.

The investigation of activity-initiation mechanisms and
burst propagation in the more complex bi-dimensional neu-
ronal cultures is difficult since one has to access large areas,
and with both high temporal and spatial resolution. There-
fore, most of the studies have used MEAs for its high tem-
poral resolution. In the quest for understanding burst ini-
tiation, some studies identified a subset of neurons termed
leaders that were always the first to ignite, and that induced
the firing of the entire neuronal population. It was also ob-
served that activity in this subset increased exponentially in
a short time window prior to the burst [7]. The authors hy-
pothesized that such a fast recruitment required the leader
neurons to be present all over the network, possibly form-
ing a subnetwork of highly connected neurons [8, 9].

Since connectivity in cultures increases with neuronal
density [4], it may be possible that neuronal aggregates
(such as the ones observed in Fig. 1B) or strong fluctuations
in the spatial distribution of neurons give rise to highly con-
nected regions that are foci of activity. Hence, given the
poor spatial resolution of MEAs, it may occur that leader
neurons actually correspond to regions with specific topo-
logical properties that favor initiation, rather than a special
kind of cells.

3. Modeling neuronal cultures dynamics

One of the key findings from the experiments in unidi-
mensional cultures [5, 10] is the identification of two prop-
agation regimes. A first one corresponds to a slow propa-
gation of the activity front that is stable only in particular
conditions. This regime is transitory and lasts a few mil-
liseconds. The second regime corresponds to the stable,
fast propagating front (such as the one of Fig. 2B) that ad-
vances along the line at constant velocity.

The theoretical and numerical analysis [10] behind these
experiments showed that, to reliable reproduce the exper-
imental observation in neuronal cultures, one has to in-
troduce more complex scenarios that go beyond simple
Integrate-and-fire models. Indeed, an appropriate neuron
model must include first a slow variable that mimics the
presence of slow K+ channels in the soma. Second, it must
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include spike frequency adaptation in order to explain the
transient regime that precedes the fast propagation. The set
of equations that include these ingredients while keeping
the minimum number of components give rise to the two-
dimensional Izhikevich model [11],

τcv̇ = k(v − vr)(v − vt) − u + I + η, (1)
τau̇ = b(v − vr) − u, (2)

if v ≥ vp then v← vc, u← u + d. (3)

Here v is the membrane potential, vr the resting potential,
vt the threshold potential, u is the slow adaptation variable
with time constant b, I the inputs received and η a noise
term. In the model, a spike is generated when the mem-
brane potential reaches a value vp. Then, v is reset to a
new value vc and u is increased by a factor d. The quan-
tities c and d are neuron-specific parameters, allowing the
incorporation of different neuronal types within the same
model.

In addition to the spiking model, another key ingredient
that is needed to account for all the observations is the dy-
namics of neuronal connections. Here we consider the con-
nections between two neurons i and j as chemical synapses
with short-term depression [12]. An action potential gen-
erated by neuron i travels down the axon and releases neu-
rotransmitters in the synaptic cleft. These neurotransmit-
ters bind to specific receptors in the presynaptic terminal
of neuron j, generating a current in its soma. Synaptic de-
pression takes into account the finite number of available
neurotransmitters and their dynamics. The whole process
can be modeled [10, 12] as

Ei(t, tm) = gDi(tm) exp
(
−

t − tm
τ

)
θ(t − tm) (4)

Ḋ =
1
τD

(1 − D) − (1 − β)Dδ(t − tm), (5)

where Ei(t, tm) is the current generated at neuron j by a
spike from neuron i at time t = tm, g is the strength of the
synapse and D(t) is the synaptic depression. The current
decays exponentially with a time constant τm. Each spike
from neuron i causes the variable D to decrease to βD, with
β < 1, recovering with a time scale τD.

In the absence of stimuli, neurons in culture fire sponta-
neously with a characteristic frequency that follows Pois-
son statistics. Although the source of spontaneous activity
is still unclear, some recent studies [13, 14] hint at minia-
ture post-synaptic currents generated by the spontaneous
release of neurotransmitter’s vesicles at the synapses. This
minis can be considered as a shot noise, i.e. a Poisson pro-
cess acting at each synapse and that generates post-synaptic
currents like Eq. (4), but of smaller amplitude.

Finally, although the dynamic behavior of neurons and
connections is essential, another key element needed to
fully understand the collective dynamics in neuronal cul-
tures is the structure of the network itself. The rich ac-
tivity observed in any neuronal tissue arises from the in-
terplay between dynamics and wiring architecture. In the
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Figure 3: Burst dynamics in a simulated culture. Left,
raster plot showing the spike times of 32 randomly selected
neurons in the culture. Spike times are marked with blue
dots along the x axis. Bursts appear as bands of collective
activity. Right: distribution of inter burst intervals (IBIs),
illustrating its high periodicity.

unidimensional case the topological structure is straight-
forward and one can assume a connectivity probability be-
tween neurons that decays with distance. In two- and three-
dimensional networks, however, the increased dimension-
ality allows for more complex connectivity patterns. In
terms of modeling, one then has to consider different net-
work structures, such as random, small-world or scale-free
topologies, or even a combination of them.

3.1. Discussion and conclusions

With the above considerations, the global bursts of ac-
tivity observed in cultures (e.g. Fig. 2A) seem to emerge
from a stochastic process that can be mapped to a problem
of percolation [15, 16]. When a critical fraction of neurons
become active at the same time, they can excite all their
neighbors and in turn, through an iterative process, the en-
tire network. One would expect that, due to the stochastic
origin of these bursting events, the inter burst interval (IBI)
would follow an exponential-like distribution. The com-
bination of many Poisson processes (single neuron firings)
should give rise to an IBI distribution peaked around zero
time and with a fast decay. However, this analysis contra-
dicts the experimental evidence that bursting is remarkably
periodic, with an IBI distribution that is Gaussian rather
than exponential. The average IBI falls in the range 1−100
s, depending on the experimental conditions.

The observation that neuronal cultures have a character-
istic time scale of seconds, while all the system’s internal
variables are of the order of ms, can only be explained by
the presence of synaptic depression in the system [14]. The
time associated to vesicle recycling in the system is of the
order of seconds, and the combination of this time scale
with the stochastic origin of activity gives rise to the peri-
odicity of the bursts, as illustrated in Fig. 3 for numerical
simulations. All the synapses in the system are depleted af-
ter a burst of activity, and the network needs a long time to
recover. Another burst can emerge only when the synapses
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have recovered up to a given threshold.
The picture of burst initiation becomes less clear when

more detailed topological properties are included in
systems beyond unidimensional cultures. Studies using
MEAs in two dimensional cultures have not revealed any
clear pattern of activity, and several studies have theorized
about the driving mechanisms of bursting behavior. From
the concept of leader neurons [8, 9] to the hypothesis of
different network structures and neuronal subtypes [17].
It was also suggested, based on both experiments and
theoretical models, that activity may be described as
neuronal avalanches with distributions that resemble those
observed in Self-Organized Criticality [18].

In conclusion, the initiation and propagation of sponta-
neous activity is a challenging problem that has not been
fully addressed yet. At an experimental level, one needs
to improve activity visualization techniques in large, bi-
dimensional cultures in order to accurately resolve propa-
gating fronts. One also needs to devise strategies to dictate
and map out network connectivity in a control manner, a
fundamental step towards the exploration of the interplay
between wiring architecture and network activity. From
a theoretical and numerical points of view, there are still
several questions open on the isolation of the fundamen-
tal ingredients at the dynamical and and topological levels,
particularly the incorporation of realistic, experimentally
measured connectivity maps and plasticity.

References

[1] E. Bullmore and O. Sporns, “Complex brain net-
works: graph theoretical analysis of structural and
functional systems.,” Nat Rev Neurosci, vol. 10,
pp. 186–198, Mar. 2009.
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