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1 Introduction

Human Activity Recognition(HAR) has become an impor-

tant area of research for its wide applications in health-

care, surveillance and industry[18]. This research focuses

on HAR’s promising prospects in industry where it can be

used to support human labours in various industrial tasks.

Majority of the past researches in HAR achieve good per-

formances using third person activity video obtained from

a fixed camera[22] [9] [10]. But in industries, many of the

field maintainance tasks need the workers to move quite a

lot. In that case wearable based HAR seems to be more suit-

able than the fixed camera based solutions. Wearable based

HAR can again be developed using either wearable motion

sensors [3] [20] [18] [19] or wearable cameras[1][24]. Wearable

motion sensors are known to perform well in HAR. But they

don’t take the first person vision into account which can be

accounted for only by wearable cameras. Past researches[1]

have used first person visual data to achieve good perfor-

mances in egocentric HAR but they use big datasets such as

GTEA [15] and Epic Kitchens [24]. Unfortunately, it is not

always possible to have enough labelled data in industries

because it is time expensive and costly. Therefore, the tar-

get of this research is to develop an efficient wearable camera

based HAR technique which can also handle situations where

limited training data are available for activities.

In limited training data circumstances, due to overfitting

problems it is not possible to train deep HAR models to au-

tomatically select important information from the egocentric

video. In such cases, it is important to feed the model with

video features that are actually important for HAR. There-

fore, a very important step towards successful deployment of

HAR in such situations is to determine what features from

the egocentric video actually helps the activity recognition.

Hamed et al. [16] and Fathi et al. [15] have shown that de-

tecting hand-object interaction from the first person video

is very important for activity classification. Also, object in-

formation has been proven to be important for first person

activity classification[1], but how much fine grained object

information is useful is still an open area of research.

In this research, we make an experimental investigation

of the effect of object information in HAR. We divide each

video frame into grids and detect objects from them. We then

selectively feed object information to the activity classifier.

By varying the number of grids, we controlled the preciseness

of the detected object location and checked how it affected

HAR.

With extensive experiments on a pseudo maintainance

task data, we showed that there is an optimum point to how

much precise object location actually helps in HAR. Both

too finegrained object location and too course object loca-

tion can harm HAR. In addition, we confirmed that the fact

that object information helps HAR [1] holds true in the lim-

ited training data case too.

2 Related Works

Human activity recognition has been an active area of re-

search in most of the computer science communities since the

1980s due to it’s variety of applications in real life. The tra-

ditional action recognition was majorly done from the third

person view where the camera stays fixed at one position.

Earlier people used hand crafted features from video for ac-

tion recognition. The video was used as a spatio-temporal

volume to extract certain interest points using methods like

HOG (Histogram of Gradients), SIFT(Spatially Invariant

Feature Transform) [5], 3D-SIFT [4] and 3D-HOG [6] which

were used to represent the actions. Dollar et al.[7] proposed

to characterize cuboids around the spatio-temporal feature

points and extract their locations and types for action recog-

nition. The current state of the art in hand crafted features

[11] use iDTs to handle temporal contents and the spatial

contents of an action video separately. Thus blindly extend-

ing a 2D method to a 3D method (like SIFT to 3D-SIFT

[4] might not be helpful. Though iDT provides a good pe-

formance in activity recognition, it becomes computationally

expensive on large datasets. The main drawback of using

handcrafted features is that they are mainly low-level features

derived from the action video and hence might be insufficient

to represent actions.

But now that powerful extensive resources like GPUs

(Graphics Processing Unit) are available, deep neural net-

works (DNN) can be trained to automatically learn the action

representations from the action data themselves provided suf-

ficient training data are available. DNN have been used to es-

timate human pose both in image [12] and video[23]. Neural

Networks have also been used to extract spatial and tempo-

ral features from adjacent video frames in 3D-Convnets [8],

C3D [9] and deep ConvNets [10] and further identify actions

based on the features.

But all of the above methods only deal with action recog-

nition from the third person viewpoint and their performance

drops on first person action recognition. Nowadays with the

advent of Google glass 1, Gopro 2, Microsoft Sensecam3 and

Panasonic wearable camera4, it has become possible to cap-

1Google glass. https://www.google.com/glass/start/
2Gopro. http://gopro.com/
3Microsoft sensecam http://research.microsoft.com/en-us/

um/cambridge/projects/sensecam/
4Panasonic HXA1H. https://panasonic.jp/wearable/p-db/

HX-A1H.html
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Figure 1: Wearable camera HX-A1H (left) and a
snapshot taken by the camera (right)

ture video from first person view. Because the first person

point of view is now available, egocentric activity recogni-

tion have gained popularity in various applications such as

worklog entry, sports, law enforcement etc. But dealing with

egocentric or first person videos is difficult as unlike before,

the view field of the first person keeps on changing with the

motion of the person. Spriggs et al.[14] proposes to use tem-

poral segmentation of the egocentric video and use it along

with IMU sensor data for recognizing different activities in

the kitchen. But they fail to exploit the human object in-

teractions for the action classification. Daily human activity

mainly depends on the various objects they interact with.

Based on this hypothesis, Hamed et. al [16] tries to recognize

daily human activities by identifying the interacting objects.

Fathi et. al [15] classified objects to be active objects, only if

the objects were in interaction with the first person’s hands.

Therefore, Fathi et al. [15] divide an egocentric video into

the background, hands and active objects without any prior

knowledge of the location of the objects and classifies the ac-

tion based on the object. Yong et. al [17] proposed a model

to predict important regions in a frame based on their tem-

poral frequency and their closeness to the center of the frame.

Their model was based on the idea that if the camera moves

with the person’s head, then the center of the frame must

follow the person’s gaze. But they require a lot of training

data to train the model and hence it becomes difficult to use

it in real world.

This paper primarily focuses on activity recognition from

first person video but unlike any of the prior works, we create

our HAR model from limited training data which is the real

world scenario as discussed in section 1.

3 Data Collection

Since our final target is to support human workers in the field

maintenance, in which workers have to move around a lot,

we utilize wearable sensors for capturing the activities. As

the advantage of utilizing video was confirmed in a previous

study [21], we decided to use an egocentric camera.

The camera we use is Panasonic’s wearable camera HX-

A1H (figure 1), which is reasonably light (45g). We collected

video data of size 640 × 360 at 30 FPS.

Using the above-mentioned camera, we defined a road-bike

maintenance task to simulate a real maintenance task. The

snapshots taken in the data collection experiment are shown

in figure 2.

In the data collection, we performed 19 different mainte-

nance activities as summarized in table 1. The duration of

activities ranges from very short ones (~1 sec, such as “check

reflector” and “check bottle”) to relatively longer ones (~30

secs, such as “inflate tire” and “wipe frame”). It takes about

5 minutes to go through all the maintenance activities (here-

inafter we call this 1 round). We conducted 12 rounds, but

there were errors in data collection in 3 rounds. Hence, we

used data from 9 rounds for the following development and

evaluation.

Figure 2: Snapshots at the data collection

4 Proposed Method

4.1 Preliminary

As we know from our everyday experiences, there is an in-

herent relation between the objects present and the activities

performed in a scene. For the task of activity recognition

from first person view, the knowledge of the objects being

interacted with can be helpful in narrowing down the list of

probable activities performed in the scene. For example if

we know that there is a bicycle involved in a task, then the

first probable activities that come into our minds are ’riding

a bicycle’ or ’bicycle maintenance’ or ’buying/selling a bicy-

cle’. Its highly improbable that a bicycle will be present in

activities like ’football game’ or ’working in a research lab’.

Therefore it is evident that the object information is very

important for recognizing an activity.

But again an object in a particular task scene has different

properties like location, size and identity. The different prop-

erties of the objects play their individual roles in the activity

recognition. The object size in an egocentric video might

tell us something about the distance of the object from the

first person like if it’s too small then probably it is irrelevant

to the activity being performed. But again there are excep-

tions to the above assumptions for example if the object is

actually small in size like a bicycle bell. Similarly the object

location in the frame tells us whether the person is gazing at

the object or not.

4.2 Object Detection

For this study of HAR, we try to recognize the various sub-

activities involved in a bicycle maintenance task as listed in

table 1. We list the various objects that are present dur-

ing those sub-activities in the table 2. Based on table 2, we

group together 16 objects that are relevant to the bicycle

mainatainance task —chain lock, key, tire, handle, saddle,

pedal, valve, inflator, reflector, water bottle, bell, light, blue

cloth, yellow cloth, oil bottle, gloved hand. We also add

keyboard and monitor as objects being relevant to the back-

ground activity class.
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Table 1: Activities in the road-bike maintenance
# Name of the activity Explanation
1 unlock Unlock the key

2 check handle -back and forth
Confirm the handle is not loose by turning it
90 degrees and try to shake it

3 check handle -left and right
Confirm the handle is not loose by holding
the front tire by knees and　 try to shake it

4 lift and drop bicycle
Confirm there is no strange sound when dropping
the front tire from 20cm height

5 check break margin
Confirm there is more than 15cm between the handle
grip and the break lever

6 check break function Confirm the break is correctly functioning
7 check saddle Confirm the saddle is not loose by trying to shake
8 check pedal Confirm the pedal is not loose by trying to shake it
9 check lever Confirm the quick levers are clamped
10 check wire Confirm the wires are not cut
11 check tire valve Confirm the valves of the tires are closed
12 check tire pressure Confirm the tire pressure is enough
13 inflate tire Inflate tire if necessary
14 check reflector Confirm the reflectors are attached
15 check bottle Confirm there is a water bottle
16 check bell Confirm the bell correctly rings
17 check light Confirm the light can be switched on
18 wipe frame Wipe the frame by a dry cloth
19 lubricate chain Lubricate the chain
20 background (bg) Activities not belonging to the above 19 classes

Figure 3: Overview of human activity recognition using egocentric video

To extract information about these objects from the

frames, we use a state of the art object detection model

called YOLOv3 (You Only Look Once) [2]5. YOLOv3 is

chosen over other detection models because it gives a robust

and acceptable performance over a wide range of datasets

like MS-COCO, VOC etc. at an acceptable speed.

YOLOv3 detects objects in three different scales. The de-

tection is done by applying 1 × 1 detection kernel to fea-

ture maps of three different sizes at three different places

in the network. Each detection kernel has a dimension of

1 × 1 × B × (5 + C) where B stands for the number of

bounding boxes predicted per cell on the feature map and C
is the total number of object classes. For each of the bound-

ing boxes, 4 box coordinates namely the height, width, center

point abscissa and ordinate, 1 object confidence score, and

C conditional object class probabilities are predicted. The

cth conditional object class probability for a bounding box is

the predicted conditional probability of the detected object

belonging to the cth object class given that there is an object

5YOLOv3 network architecture. https://www.cyberailab.
com/home/a-closer-look-at-YOLOv3

in the bounding box. In this research, the value of C is 18.

The YOLOv3 is pretrained with B = 3 and C = 80
on the MS-COCO dataset whose images were reshaped to

416 × 416 × 3. For the image size of 416 × 416 × 3, the

detection kernel is applied on three feature maps of sizes 13×
13, 26× 26 and 52× 52. While the 13× 13 feature maps

are responsible for detecting big objects, the 26 × 26 and

52 × 52 feature maps are responsible for the medium and

small sized objects respectively. Hence it can be said that

image is divided into 13 × 13, 26 × 26 and 52 × 52 grids

successively and for each gridsize, we get 3 bounding box

prediction per grid.

The pretrained YOLOv3 was finetuned to detect the 18

objects defined earlier from our bicycle datasets. We just

finetuned the last few layers of the YOLOv3. We resized

our egocentric video frames to 416 × 416 × 3 to prevent

finetuning the input layers.

4.3 Object Information Selection

When fed with 416 × 416 × 3 dimensional frames, the out-

put of the last layer of YOLOv3 is a 2D matrix of dimension
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Table 2: The table enlists the various di�erent activities and objects involved in a standard bicycle main-
tenance task.

Activity number Activity Objects involved
1 background monitor, keyboard
2 unlock cycle chain lock, key, tire, gloved hand
3 check handle-back and forth handle, gloved hand
4 check handle-to and fro handle, gloved hand
5 lift and drop bicycle handle, tire, gloved hand
6 checking brake margin handle, gloved hand
7 checking brake function handle, tire, gloved hand
8 check saddle saddle, gloved hand
9 check pedal pedal, tire, gloved hand
10 check tire valve tire, valve, gloved hand
11 check tire pressure tire, gloved hand
12 inflate tire tire, inflator, valve, gloved hand
13 check reflector tire, reflector, gloved hand
14 check water bottle water bottle
15 check bell bell, gloved hand
16 chech light light, gloved hand
17 wipe frame blue cloth, yellow cloth, gloved hand
18 lubricate chain oil bottle, gloved hand

(((13 ∗ 13)+ (26 ∗ 26)+ (52 ∗ 52)) ∗ 3)× (4+ 1+18) =
10647 × 23. We hypothesize that for the purpose of activ-

ity recognition, the exact location of an object inside a grid

is not very important. Since YOLOv3 detects the objects

grid wise, much of the location information of the objects is

preserved in the grid separations. So based on this hypothe-

sis, we ignore the predicted bounding box coordinates for the

detected objects.

When an image I is divided into 13 × 13 grids, suppose

w and h are the width and height of a single grid G13×13

respectively. Similarly when the same image is divided into

26× 26 grids, the width and height of a single grid G26×26

become w
2 and h

2 respectively. For the area inside a G13×13

grid, we get a 2 × 2 G26×26 grids and a 4 × 4 G52×52

grids where G52×52 is a single grid when the image I is

divided into 52× 52 grids. Therefore for that area, we get 3

predicted bounding boxes from G13×13, 12 boxes from the

2×2G26×26 and 48 boxes from the 4×4G52×52. Hence for

an area covered by a single G13×13, we get 3+12+48 = 63
bounding box predictions in total.

The object confidence score for the detected bounding box

b in grid (i, j) from frame f can be assumed to be the prob-

ability with which the bounding box contains an object and

can be denoted as (P f
i,j,b(object)). The cth conditional ob-

ject class probability for the same bounding box can be de-

noted as P f
i,j,b(class = c|object) where 1 ≤ c ≤ 18. The

object class probability for class c for detected bounding box

b in grid (i, j) from frame f can be calculated using the

conditional object probability and object confidence score as

follows :-

P f
i,j,b(class = c) = P f

i,j,b(object)×P f
i,j,b(class = c|object)

(1)
For the purpose of activity recognition, the temporal infor-

mation among the adjacent frames holds great importance.

People have tried to incorporate the temporal information

via various methods like LSTM(Long Short-Term Memory),

3D convolution etc to find improved results.

Here we propose a method to involve the temporal infor-

mation while extracting the object information. Instead of

feeding one frame at a time to the YOLOv3, we use a sliding

window to feed n consecutive frames together and we get an

output tensor of dimension n × 10647 × 23. As discussed

earlier, for an area covered by a G13×13, we get 63 bounding

box predictions per frame. We calculate the object features

O for frame f ′ as

Of ′

i,j,c = max
f ′≤f≤f ′+n,1≤b≤B

P f
i,j,b(class = c) (2)

where B is 63 as discussed earlier.

Similar to equation 4, we also calculate the minimum,

mean and standard deviation and stack them together in the

third dimension.

4.4 Feature Extraction via 3D-ResNeXt

We also use a 3D-ResNeXt101 [22] model pretrained on Ki-

netics dataset to extract video features from groups of ad-

jacent frames. The 2048 dimensional output of the average

pool layer preceding the last layer of the ResNeXt was used

as video features. Then the video features were concatenated

with the object features from YOLOv3 by finding the closest

timestamps.

4.5 Activity classification

For video data from each of the rounds, we create the inte-

grated features by concatenating the ResNeXt video features

and the object features. As we have limited amount of data

for the activities, it is not possible for us to train a classifier

network on the extracted features. Therefore for evaluation,

we randomly choose some of the captured videos as our train-

ing data while the others are our testing data. Using the

information of the labeled training data as our refernence,

our task is to correctly recognize each of the unlabeled ac-

tivity in the testing data. For classification, we use nearest

neighbor (NN) classification on Euclidean distance between

the integrated data of the training and testing data. Further-

more, due to the different sizes of the ResNeXt video features
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and the object features, we give them different weights for

calculating the Euclidean distance. Therefore, our distance

formula is changed to

dist =(wO ∗ d(Otraining, Otesting)
2+

wR ∗ d(Rtraining, Rtesting)
2)1/2 (3)

where d(x, y) is the Euclidean distance between x and y,

Otraining and Rtraining are the object and ResNeXt video

features for the training data respectively.

5 Experiments

For HAR evaluation, we used the video data from 9 rounds

and computed the integrated features as proposed for each

of them. We used 60-fold cross validation for evaluation. In

each fold, the videos were divided into 7 training data and 2

testing data randomly and the classification was done as dis-

cussed in section 4.5. For our experiments, wv is chosen to

be 0.005 while wR is chosen to be 1. We calculated the pre-

cision and recall for each activity class over all the folds. The

overall precision and recall were calculated as the weighted

average of the classwise precision and recall. The weight cor-

responding to an activity was proportional to the frequency

of occurence of the activity in the test data. Firstly we show

here the effect of varying the amount of object location on

HAR performance. Next we confirm by our results that hav-

ing object information for HAR helps even in the limited data

scenario. Finally we show the object detection performance

results.

5.1 Importance of object location in HAR

The object information in an image or frame has mainly 2

parts which are object location and object identity. As we

are ignoring the bounding box data, our only source of object

location is from the grid locations on the image. Therefore

if the image is divided into higher number of grids, the grids

become finer and we obtain more precise object location. To

check how far object location is important for HAR, we var-

ied the number of grids in the frames and checked the cor-

responding HAR performance. To vary the number of grids,

we considered a square sliding window of size e×e and slid it

over the 13 × 13 grid space with a stride s. The final output

features O were calculated as

Of ′

i′,j′,c =

max
i′≤i≤i′+e,j′≤j≤j′+e,f ′≤f≤f ′+n,1≤b≤B

P f
i,j,b(class = c)

(4)
where 1 ≤ i, j ≤ 13−e

s +1. The minimum, mean and stan-

dard deviation are also calculated similarly. If x is chosen as

4 and s is chosen as 1, the final output object feature O is a

tensor of size 10×10×72. We varied the value of e and s to

get different grid resolutions for the object features. The ex-

tracted object features were then intergrated with the video

features from ResNeXt101 to be used for activity recognition.

As can be seen from the figure 4, the HAR performance

is highest when the number of grids is chosen as 13 × 13

Figure 4: Dependence of HAR performance on grid
size

but the performance drops as the number of grids becomes

higher or lower. 1 × 1 grids is an extreme case where the

whole frame is considered as one single grid and in this case,

all of object location information is lost. These results imply

that too little object location information is harmful for HAR

task but too much of it is also not helpful. When a person

repeats an activity, the relevant objects might not be in the

same position like the last time. In such cases, too precise

object location will be harmful. Again when an activity is

performed, objects irrelevant to that activity but relevant to

some other activity might appear in the scene. For example,

during inflating a bicycle tire, the only relevant objects are

the tire, hand, inflator and the valve but objects like saddle

might be appearing in the same frame. In cases as above,

if we ignore the object location too much, we might prior-

itize the wrong objects over the important ones leading to

misclassification.

5.2 Evaluation of HAR model

We made a comparison of the overall HAR precision and re-

call for three different cases in table 3. It can be seen that

integrating object information with the resnext video fea-

tures achieves better performance than using either of them

alone for the activity classification. We have also shown the

confusion matrices for HAR evaluation using only resnext

features and using our proposed method in tables 4 and 5 re-

spectively. If we compare the two confusion matrices, it can

be seen that using integrated features has helped in improv-

ing the precision and recall for most of the activity classes

like background, unlock, check handle back and forth, lift

and drop bicycle, check pedal etc. This is reasonable as the

objects involved in an activity helps to provide additional in-

formation about the activity and therefore helps in correct

classification. But for some of the activities like check sad-

dle, check pressure and check reflector, performance drops on

using integrated features while for activities like check bottle

and check bell, there is no change in the performance. The
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Table 3: Comparison of HAR performance
HAR Methods precision recall f-measure

Using only video features from ResNeXt101 0.6564 0.6545 0.6534
Using only object features from YOLOv3 0.6274 0.5580 0.5523

Using integrated features 0.6700 0.6715 0.6691

Table 4: Confusion matrix for HAR evaluation using only ResNeXt101 video features
bg unlock handle-bf handle-lr lift & drop b-margin b-func saddle pedal lever wire valve pressure inflate reflector bottle bell light wipe lubricate total recall

bg [28010] 292 357 213 96 241 713 202 73 186 560 109 200 778 485 156 145 157 390 1484 34847 0.8038
unlock 452 [784] 0 14 30 37 49 29 24 13 49 0 12 79 1 3 0 4 115 85 1780 0.4404
handle-bf 481 14 [498] 16 0 11 72 9 4 20 24 2 47 18 43 0 0 21 0 0 1280 0.3891
handle-lr 168 0 0 [361] 6 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 537 0.6723
lift & drop 327 10 38 1 [169] 0 40 0 0 9 63 0 0 0 20 0 0 5 0 18 700 0.2414
b-margin 251 23 13 11 13 [213] 95 0 9 16 18 0 42 101 58 18 0 16 1 12 910 0.2341
b-func 794 51 149 0 10 92 [764] 36 14 56 102 15 5 100 30 25 5 46 80 67 2441 0.3130
saddle 119 0 0 0 0 0 23 [94] 0 1 0 0 7 27 0 0 7 0 0 18 296 0.3176
pedal 77 0 2 0 0 0 36 0 [106] 32 0 0 0 77 0 0 0 0 52 0 382 0.2775
lever 231 0 3 0 0 5 44 5 59 [151] 82 27 3 23 39 1 0 0 16 37 726 0.2080
wire 592 35 51 4 21 96 159 12 14 80 [249] 26 56 120 41 0 4 17 149 21 1747 0.1425
valve 195 0 0 5 0 0 8 0 2 18 23 [143] 25 80 11 0 10 0 14 51 585 0.2444
pressure 408 0 22 0 2 26 26 13 0 0 47 19 [44] 18 0 16 0 13 3 28 685 0.0642
inflate 1240 109 189 16 0 16 177 38 183 149 124 6 103 [8172] 47 1 0 1 326 388 11285 0.7241
reflector 375 0 3 12 0 0 38 2 0 17 29 14 5 0 [93] 19 0 0 25 6 638 0.1458
bottle 122 0 0 2 0 0 5 0 0 0 0 0 6 0 14 [0] 0 0 0 0 149 0.0
bell 90 3 12 0 0 0 3 33 0 0 3 0 0 0 0 1 [0] 10 0 0 155 0.0
light 346 15 13 0 22 65 13 18 0 0 31 0 5 0 11 3 6 [187] 5 3 743 0.2517
wipe 870 116 12 31 0 27 133 3 28 8 122 25 0 297 52 3 0 12 [1185] 290 3214 0.3687
lubricate 813 89 15 0 0 12 55 0 1 0 33 16 19 159 24 0 0 0 206 [2959] 4401 0.6723

total 35961 1541 1377 686 369 841 2453 494 517 756 1560 402 579 10049 969 246 177 489 2568 5467 67501

precision 0.7789 0.5088 0.3617 0.5262 0.4580 0.2533 0.3115 0.1903 0.2050 0.1997 0.1596 0.3557 0.0760 0.8132 0.096 0.0 0.0 0.3824 0.4614 0.5412

possible reasons for the above are :-

• The YOLOv3 is not finetuned well enough to detect

certain objects confidently.

• When repeating the same activities, the objects might

not be in the same location. NN classifier might not be

able to give good results in that case for our proposed

idea.

• For activities that involve only visual interactions with

the objects like check bottle and check bell, our model

fails to know which object is the main object in the

activity as those frames include a number of objects.

For the future work, we want to include some bounding box

information in the action recognition task as the sizes of the

bounding boxes might be helpful in determining the object

the person is looking at.

5.3 Qualitative and quantitative evaluation of
object detection

For the fine-tuning of YOLOv3, we collected egocentric video

data focusing mainly on the 22 objects defined in Table 2

and annotated the video for our ground truth. We evalu-

ated the performance of finetuned YOLOv3 using randomly

selected frames from the activity video, which were not used

for finetuning. Not all the predictions by YOLOv3 are qual-

ified to be the final object detections.For evaluation, we set

an object confidence threshold of 0.6 so that any bounding

box predictions with object confidence below 0.6 is ruled out.

The resulting predictions go through non-maximum suppres-

sion(NMS). During NMS, all the remaining bounding boxes

are selected one by one in the decreasing order of their object

confidences. any lesser confident bounding box having same

predicted object class as the selected box and overlapping

too much with the selected box is suppressed. The overlap

between the bounding boxes is measured in terms of Inter-

section over Union (IOU) which is calculated as

IOU(BB1, BB2) =
Area(BB1 ∩BB2)

Area(BB1 ∪BB2)
(5)

where BB stands for bounding box. If two predicted bound-

ing boxes are classified to the same object class and their

IOU is more than the IOU threshold of 0.4, we rule out the

bounding box with the lower object confidence. After all fil-

tering, we get our final detections for the frames. Visually our

object detection model seems to perform well. From figure

5, it is clear that we are able to detect most of the objects

successfully. But unfortunately some of the prominent ob-

jects do go undetected, namely tires, oil bottle, reflector and

pedal. On the other hand, objects like water bottle and light

are detected quite far from their actual locations.

A quantitative investigation was done to note which classes

were detected well and which classes were not detected at all.

An object is said to be correctly detected in a frame if the

corresponding predicted bounding box has an IOU of over 0.5

with one of the ground truth bounding boxes and their labels

also match. For each object class, the precision and recall are

calculated. The results are tabulated in table 6. As can be

seen, the YOLOv3 detects some of the objects well while

it shows very low performance for many objects. Mainly the

objects that are really easy to be occluded remain undetected

by the YOLOv3 model. One of the reasons might be the
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Table 5: Confusion matrix for HAR evaluation using our proposed method
bg unlock handle-bf handle-lr lift & drop b-margin b-func saddle pedal lever wire valve pressure inflate reflector bottle bell light wipe lubricate total recall

bg [28462] 263 343 210 94 220 674 210 67 170 527 122 213 719 466 143 135 162 382 1122 34704 0.8201
unlock 466 [776] 0 14 22 24 43 40 13 18 37 0 12 57 3 6 0 4 112 68 1715 0.4525
handle-bf 433 12 [541] 13 0 15 67 6 4 23 21 2 32 23 25 0 0 21 0 0 1238 0.4370
handle-lr 157 0 4 [356] 9 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 528 0.6742
lift&drop 308 10 41 1 [192] 0 43 0 0 10 53 0 0 0 15 0 0 1 0 18 692 0.2775
b-margin 219 21 8 13 7 [210] 106 0 11 13 20 0 36 78 45 18 0 13 1 13 832 0.2524
b-fund 816 46 133 0 11 92 [776] 24 13 51 104 15 3 96 28 28 1 36 68 51 2392 0.3244
saddle 129 0 0 0 0 0 20 [92] 0 1 0 0 10 24 0 0 5 0 0 9 290 0.3172
pedal 58 0 2 0 0 0 41 0 [109] 35 0 0 0 85 0 0 0 0 52 0 382 0.2853
lever 224 0 5 0 0 1 31 1 45 [148] 72 30 1 20 33 1 0 0 15 33 660 0.2242
wire 596 41 44 2 20 85 139 10 15 89 [244] 34 72 112 34 2 2 12 168 12 1733 0.1408
valve 222 0 0 3 0 0 4 0 2 15 27 [194] 32 73 13 0 13 0 12 46 656 0.2957
pressure 407 0 29 0 2 30 24 15 0 0 44 22 [42] 20 0 20 0 11 3 25 694 0.0605
inflate 1103 126 158 12 0 13 143 48 156 134 99 8 87 [8281] 59 1 0 3 275 309 11015 0.7518
reflector 364 0 5 11 0 3 38 4 0 16 32 22 3 0 [80] 20 0 0 23 5 626 0.1278
bottle 132 0 0 2 0 1 1 1 0 0 0 0 6 0 11 [0] 0 0 0 0 154 0.0
bell 96 0 11 0 0 0 3 33 0 0 2 0 0 0 0 1 [0] 12 0 0 158 0.0
light 327 13 13 0 31 54 11 20 0 0 31 0 4 4 13 1 5 [192] 3 0 722 0.2659
wipe 884 93 15 39 0 20 100 5 32 6 118 32 0 275 61 6 0 14 [1218] 251 3169 .3843
lubricate 846 91 12 0 0 14 44 0 1 0 29 15 22 166 25 0 0 0 238 [2963] 4466 0.6635

total 36249 1492 1364 676 388 782 2308 509 468 729 1461 496 575 10033 911 247 161 481 2571 4925 66826

precision 0.7852 0.5201 0.3966 0.5266 0.4948 0.2685 0.3362 0.1807 0.2329 0.2030 0.1670 0.3911 0.0730 0.8254 0.0878 0.0 0.0 0.3992 0.4737 0.6016

(a) Input frame with ground truth bounding boxes (b) Object detections by YOLOv3

Figure 5: visual analysis of YOLOv3 performance

Table 6: Precision and recall of YOLOv3 for each
object class.

Objects precision recall
chain lock 0.4362 0.1189

key 0.0 0.0
handle 0.2407 0.0790
tire 0.0033 0.0035

saddle 0.247 0.06
pedal 0.071 0.035
bell 0.016 0.0054
light 0.1185 0.0532

reflector 0.0069 0.00157
water bottle 0.1475 0.059
blue cloth 0.0496 0.0108
yellow cloth 0.5671 0.229
oil bottle 0.024 0.0055
valve 0 0

inflator 0.1079 0.020
monitor 0.2532 0.1578
keyboard 0.6222 0.30528

gloved hand 0.3993 0.1272

very limited amount of ground truth annotations available

for some of the object classes which might lead to insufficient

fine-tuning.

6 Conclusions

This research presented a novel way of extracting object fea-

tures from egocentric video data and integrate it with video

features extracted rom ResNeXt101 to enhance the perfor-

mance of the human-activity-recognition model. We made a

study of the significance of object location in action recogni-

tion and found that there is an optimum point to the amount

of object location information useful for HAR. Furthermore,

our experimental results confirm that the object information

do help in activity recognition and we were able to outper-

form the ResNeXt features based activity detection.
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