Summary

Proceedings of the 2012 International Symposium on Nonlinear Theory and its Applications

2012

Session Number:D3L-B

Session:

Number:903

Turning the Hopf Cochlea into a Listener

Florian Gomez,  Ruedi Stoop,  

pp.903-906

Publication Date:

Online ISSN:2188-5079

DOI:10.15248/proc.1.903

PDF download (408.6KB)

Summary:
The Hopf Cochlea is a hard- and software implemented model of the mammalian cochlea that is constructed from a series of feedforward coupled nonlinear Hopf system amplifier sections. All salient nonlinear aspects of hearing can be traced back to the physical properties of the Hopf oscillators. At each location along the cochlea, the amplification strength is effectively governed by a single real parameter characterizing the distance of the Hopf oscillator from the Hopf-bifurcation point. Using these parameters, given a mixture of input signals (e.g., a set of musical instruments) it should be possible to tune the cochlea towards a single sound component. Introducing an autocorrelation-based tuning measure, we demonstrate the tunability of the Hopf Cochlea on recorded real-life instruments of different timbres and pitches. Despite the strongly nonlinear and therefore interaction-prone nature of the device, strong and simple tuning patterns permit an easy tuning to sounds of varying pitch.

References:

[1] von Bekesy, G.(1960). Experiments in Hearing. Mc-Graw Hill Book Co., New York.

[2] de Boer, E. (1976). On the residue and auditory pitch perception. In Keidel,W.D. and Neff,W.D. (eds.) Handbook of Sensory Physiology, vol. 3, 479-583. Springer, Berlin.

[3] Eguiluz, V.M., Ospeck, M., Choe, Y., Hudspeth, A.J. and Magnasco, M. O. (2000). Essential Nonlinearities in Hearing. Phys. Rev. Lett. 84, 5232 (2000).

[4] Gold, T. (1948). Hearing. 2. The Physical Basis of the Action of the Cochlea. Proc. R. Soc. London.B, 135 (881), 492498, doi:10.1098/rspb.1948.0025

[5] Guinan J.J., Jr. (2006), Olivocochlear efferents: anatomy, physiology, function, and the measurement of efferent effects in humans. Ear Hear. 27, 589-607.

[6] Helmholtz, H.L.F. (1863). Die Lehre von den Tonempfindungen als physiologische Grundlage fuer die Theorie der Musik. Vieweg, Braunschweig.

[7] Hudspeth, A.J. (2008). Making an Effort to Listen: Mechanical Amplification in the Ear. Neuron 59, 530-544.

[8] Hopf, E. (1942). Abzweigung einer periodischen Loesung von einer stationaeren Loesung eines Differentialsystems. Ber. Math. Phys. Saechsische Akad. Wiss. Leipzig 94, 122.

[9] Kern, A. and Stoop, R. (2003). Essential Role of Couplings between Hearing Nonlinearities. Phys. Rev. Lett. 84, 5232-5235.

[10] Mountain, D.C. (1980). Changes in endolymphatic potential and crossed olivocochlear bundle stimulation alter cochlear mechanics. Science 210, 7172.

[11] Martignoli, S. and Stoop, R. (2010). Local cochlear correlations of perceived pitch. Phys. Rev. Lett. 105 (4) 048101; doi:10.1103/PhysRevLett.105.048101.

[12] Martignoli, S., van der Vyver, J.-J., Kern, A., Uwate, Y. and Stoop, R. (2007). Analog electronic cochlea with mammalian hearing characteristics. Appl. Phys. Lett. 91, 064108; doi:10.1063/1.2768204.

[13] Ruggero, M. (1992). Responses to Sound of the Basilar Membrane of the mammalian Cochlea. Curr. Opin. Neurobiol. 2, 449-456.

[14] Ruggero, M., Rich, Nola C., Recio, A., Narayan, S. Shymla, and Robles, L. (1997). Basilar-membrane responses to tones at the base of the chinchilla cochlea. Journal of the Acoustical Society of America 101, 2151-2163.

[15] Stoop, R., Jasa, T., Uwate, Y. and Martignoli, S. (2007). From hearing to listening: Design and properties of an actively tunable electronic hearing sensor. Sensors 7, 3287-3298; doi:10.3390/s7123287.

[16] Stoop, R. and Kern, A. (2004). Two Tone Suppression and Combination Tone Generation as Computations performed by the Hopf Cochlea. Phys. Rev. Lett. 93, 268103.

[17] Stoop, R. and Kern, A. (2004). Essential auditory contrast-sharpening is preneuronal. Proc. Natl. Acad. Sci. USA 101, 91799181. In Proc. NDES'03, pp. 1-10, Scuol, Switzerland, 2003.