Summary

Proceedings of the 2012 International Symposium on Nonlinear Theory and its Applications

2012

Session Number:D2L-C

Session:

Number:860

“Realistic” Electronic Neuron

Elena Tamaševiciute,  Gytis Mykolaitis,  Arunas Tamaševicius,  

pp.860-863

Publication Date:

Online ISSN:2188-5079

DOI:10.15248/proc.1.860

PDF download (611.4KB)

Summary:
An electronic circuit, imitating spiking trains from real neurons, is described. The electronic neuron is a Wien-bridge based circuit with a super-linear spike mechanism. Numerical simulations using ELECTRONICS WORKBENCH and MATHEMATICA software, also hardware experiments have been performed. The characteristics of the spikes are the following: spike height is 100 mV, spike width is 1 ms, and interspike interval is 100 ms.

References:

[1] S. Binczak, V. B. Kazantsev, V. I. Nekorkin, and J. M. Bilbaut, “Experimental study of bifurcations in modified FitzHugh-Nagumo cell,” Electron. Lett., vol.39, pp.961-962, 2003.

[2] S. Jacquir, S. Binczak, J. M. Bilbaut, V. B. Kazantsev, and V. I. Nekorkin, “Study of electronic master-slave MFHN neurons,” Proc. 12th International Workshop on Nonlinear Dynamics of Electronic Systems, NDES'2004, 2004, Évora, Portugal, pp.182-185. Centro de Geofisica de Évora, Universidade de Évora, 2004.

[3] S. Jacquir, S. Binczak, J. M. Bilbaut, V. B. Kazantsev, and V. I. Nekorkin, “Synaptic coupling between two electronic neurons,” Nonlin. Dyn., vol.44, pp.29-36, 2006.

[4] E. Tamaševiciute, A. Tamaševicius, G. Mykolaitis, S. Bumeliene, R. Kirvaitis, and R. Stoop, “Electronic analog of the FitzHugh-Nagumo neuron model and noninvasive control of its steady state,” Proc. 17th International Workshop on Nonlinear Dynamics of Electronic Systems, NDES'2009, 21-24 June, 2009, Rapperswil, Switzerland, p.138-141, USB Memflash.

[5] A. Tamaševicius, E. Tamaševiciute, G. Mykolaitis, S. Bumeliene, R. Kirvaitis, and R. Stoop, “Neural spike suppression by adaptive control of an unknown steady state,” Lecture Notes Comp. Sci., vol.5768, pp.618-627, 2009.

[6] J. Aliaga, N. Busca, V. Minces, G. B. Mindlin, B. Pando, A. Salles, and L. Sczupak, “Electronic neuron within a ganglion of a leech (Hirudo Medicinalis),” Phys. Rev. E, 2003, 67, (6), 061915

[7] J. D. Sitt and J. Aliaga, “Versatile biologically inspired electronic neuron,” Phys. Rev. E, vol.76, 051919, 2007.

[8] S. Duan and X. Liao, “An electronic implementation for Liao's chaotic delayed neuron model with nonmonotonous activation function,” Phys. Lett. A, vol.369, pp.37-43, 2007.

[9] E. Tamaševiciute, G. Mykolaitis, and A. Tamaševicius, “Analogue modelling an array of the FitzHugh-Nagumo oscillators,” Nonlinear Analysis: Modelling and Control, vol.17, pp.118-125, 2012.

[10] W. Gerstner and W. Kistler, Spiking neuron models, Cambridge University Press, Cambridge, 2005.

[11] R. Brette and W. Gerstner, “Adaptive exponential integrate-and-fire model as an effective description of neuronal activity,” J. Neurophys., vol.94, pp.3637-3642, 2005.

[12] A. L. Benabid, P. Pollak, A. Louveau, S. Henry, and J. Derougemont, “Combined (thalamotomy and stimulation) stereotactic surgery of the vim thalamic nucleus for bilateral Parkinson disease,” Appl. Neurophys., vol.50, pp.344-346, 1987.

[13] A. L. Benabid, A. Benazzous, and P. Pollak, “Mechanisms of deep brain stimulation,” Mov. Disorders, vol.17, (suppl.3), pp. S73-S74, 2002.

[14] E. B. Montgomery and J. T. Gale, “Mechanisms of deep brain stimulation (DBS),” Neurosci. Biobehavioral Rev., vol.32, pp.388-407, 2008.