Summary

Proceedings of the 2012 International Symposium on Nonlinear Theory and its Applications

2012

Session Number:D1L-A

Session:

Number:771

Bifurcations of synchronized states in inhibitory coupled neurons

Kyoko Kai,  Hiroyuki Kitajima,  

pp.771-774

Publication Date:

Online ISSN:2188-5079

DOI:10.15248/proc.1.771

PDF download (1.4MB)

Summary:
Inhibitory synapses regulate synchronous firings, however, the analysis of the inhibitory coupled system is not enough. In this paper we investigate inhibitory coupled five and six Morris-Lecar neurons. This system is an important motif to understand phenomena in a large-scaled small-world network. In this system, we observe all possible cluster synchronizations except for the complete in-phase synchronization. Also, their bifurcations are studied.

References:

[1] D.J. Watts and S.H. Strogatz, Collective dynamics of small world networks, Nature, 393:440-442, 1998.

[2] A.L. Barabási and R. Albert, Emergence of scaling in random networks, Science, 286:509-512, 1999.

[3] R. Albert and A.L. Barabási, Statistical mechanics of complex networks, Rev. Mod. Phys. 74:47-97, 2002.

[4] O. Sporns, D.R. Chialvo, M. Kaiser, and C.C. Hilgetag, Organization, development and function of complex brain networks, TRENDS in Cognitive Science, 8(9):419-425, 2004.

[5] D.S. Bassett, A.M. Lindenberg, S. Achard, T. Duke and E. Bullmore, Adaptive reconfiguration of fractal smallworld human brain functional networks, Proc. Natl. Acad. Sci. U.S.A. 103:19518, 2006.

[6] L. Zemanová, C. Zhou and J. Kurths, Structural and functional clusters of complex brain networks, Physica D, 224:202-212, 2006.

[7] N. Takahashi, T. Sasaki, W. Matsumoto and Y. Ikegaya, Circuit topology for synchronizing neurons in spontaneously active networks, Proc. Natl. Acad. Sci. U.S.A. 107(22):10244-10249, 2010.

[8] E. Bullmore and O. Sporns, Complex brain networks: graph theoretical analysis of structural and functional systems, Nature Reviews Neuroscience, 10:186-198, 2009.

[9] A. Pikovsky and M. Rosenblum and J. Kurths, Synchronization: A universal concept in nonlinear sciences, Cambridge University Press, 2001.

[10] K.V. Srinivas, R. Jain, S. Saurav and S.K. Sikdar, Smallworld network topology of hippocampal neuronal network is lost, in an in vitro glutamate injury model of epilepsy, Eur. J. Neurosci., 25:3276-3286, 2007.

[11] K. Lehnerts et al., Synchronization phenomena in human epileptic brain networks, J. Neuroscience Methods, 183, 42-48, 2009.

[12] M. Barahona and L.M. Pecora, Synchronization in smallworld systems, Phys. Rev. Lett. 89: 054191, 2002.

[13] T. Nishikawa and A.E. Motter, Maximum performance at minimum cost in network synchronization, Physica D, 224:77-89, 2006.

[14] L.F. Lago-Fernández, R. Huerta, F. Corbacho and J.A. Sigüenza, Fast response and temporal coherent oscillations in small-world networks, Phys. Rev. Lett. 84(12):2758-2761, 2000.

[15] H. Hong, M.Y. Choi and B.J. Kim, Synchronization on small-world networks, Phys. Rev. E. 65:026139, 2002.

[16] H. Hong, B.J. Kim, M.Y. Choi and H. Park, Factors that predict better synchronizability on complex networks, Phys. Rev. E. 69:067105, 2004.

[17] A.M. Batista, S.E.S. Pinto, R.L. Viana and S.R. Lopes, Mode locking in small-world networks of coupled circle maps, Physica A, 322:118-128, 2003.

[18] A. Arenas, A. Diaz, J. Kurths, Y. Moreno and C. Zhou, Synchronization in complex networks, Physics Reports, 469:93-153, 2008.

[19] T. Nishikawa, A.E.Motter, Y.C. Lai and F.C. Hoppensteadt, Heterogeneity in oscillator network: Are smaller worlds easier to synchronize?, Phys. Rev. Lett. 91:014101, 2003.

[20] M. Zhao, T. Zhou, B.H. Wang, G. Yan, H.J. Yang and W.J. Bai, Relations between average distance, heterogeneity and network synchronizability, Physica A, 371:773-780, 2006.

[21] I. Belykh, E. Lange and M. Hasler, Synchronization of bursting neurons: what matters in the network topology, Phys. Rev. Lett. 94:188101, 2005.

[22] H. Kitajima, Synchronization in synaptically coupled neurons with small-world structure, Proc. NDES, 70-73, 2009.

[23] V.S. Sohal and J.R. Huguenard, Inhibitory coupling specifically generates emergent gamma oscillations in diverse cell types, Proc. Natl. Acad. Sci. U.S.A. 102(51):18638-18643, 2006.

[24] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii and U. Alon, Network Motifs: simple building blocks of complex networks, Science, 298:824-827, 2002.

[25] C. Morris and H. Lecar, Voltage oscillations in the barnacle giant muscle fiber, Biophys. J. 35:193-213, 1981.

[26] T. Tateno H.P.C. Robinson, Rate coding and spike-time variability in cortical neurons with two types of threshold dynamics, J. Neurophysiol. 95:2650-2663, 2006.

[27] H. Kawakami, Bifurcation of periodic responses in forced dynamic nonlinear circuits: computation of bifurcation values of the system parameters, IEEE Trans. Circuits and Systems, CAS-31(3):246-260, 1984.