Summary

Proceedings of the 2012 International Symposium on Nonlinear Theory and its Applications

2012

Session Number:C3L-D

Session:

Number:763

Delay reduction in networks of coupled dynamical systems

Leonhard Lücken,  Jan Philipp Pade,  Serhiy Yanchuk,  

pp.763-766

Publication Date:

Online ISSN:2188-5079

DOI:10.15248/proc.1.763

PDF download (308.2KB)

Summary:
We consider networks of coupled dynamical systems with delayed interactions and discuss the possibilities of delay reductions for arbitrary coupling topologies. Using appropriate timeshift transformations, the number of interaction delays can always be reduced to at most the dimension of the cycle space of the underlying graph. For instance, in a unidirectional ring we can reduce the number of different delays to one while the roundtrip delay time is preserved. More generally, the roundtrips along a set of fundamental cycles act as an important factor in determining the dynamical behavior.

References:

[1] L. Appeltant, M. C. Soriano, G. Van der Sande, J. Danckaert, S. Massar, J. Dambre, B. Schrauwen, C. R. Mirasso, and I. Fischer. Information processing using a single dynamical node as complex system. Nature Comm, 2, 2011.

[2] A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore. Chaos-based communications at high bit rates using commercial fibre-optic links. Nature, 438(7066):343-346, Nov. 2005.

[3] P. Baldi and A. Atia. How delays affect neural dynamics and learning. IEEE Transactions on Neural Networks, 5:1045-9227, 1994.

[4] C. E. Carr. Processing of temporal information in the brain. Annu. Rev. Neurosci., 16:223-243, 1993.

[5] G. V. der Sande, M. C. Soriano, I. Fischer, and C. R. Mirasso. Dynamics, correlation scaling, and synchronization behavior in rings of delay-coupled oscillators. Physical Review E (Statistical, Nonlinear, and Soft Matter Physics), 77(5):055202, 2008.

[6] O. D’Huys, R. Vicente, T. Erneux, J. Danckaert, and I. Fischer. Synchronization properties of network motifs: Influence of coupling delay and symmetry. Chaos, 18(3):037116, 2008.

[7] T. Erneux. Applied Delay Differential Equations, volume 3 of Surveys and Tutorials in the Applied Mathematical Sciences. Springer, 2009.

[8] V. Flunkert, S. Yanchuk, T. Dahms, and E. Schöll. Synchronizing distant nodes: A universal classification of networks. Phys. Rev. Lett., 105(25):254101, Dec 2010.

[9] J. Foss, A. Longtin, B. Mensour, and J. Milton. Multistability and delayed recurrent loops. Phys. Rev. Lett., 76:708-711, 1996.

[10] A. L. Franz, R. Roy, L. B. Shaw, and I. B. Schwartz. Effect of multiple time delays on intensity fluctuation dynamics in fiber ring lasers. Phys. Rev. E, 78(1):016208, 2008.

[11] G. Giacomelli and A. Politi. Relationship between delayed and spatially extended dynamical systems. Phys. Rev. Lett., 76(15):2686-2689, 1996.

[12] J. K. Hale and S. M. Tanaka. Square and pulse waves with two delays. Journal of Dynamics of Differential Equations, 12:1-30, 2000.

[13] S. Heiligenthal, T. Dahms, S. Yanchuk, T. Jüngling, Flunkert, I. Kanter, E. Schöll, and W. Kinzel. Strong and weak chaos in nonlinear networks with time-delayed couplings. Phys. Rev. Lett., 107:234102, 2011.

[14] I. Kanter, M. Zigzag, A. Englert, F. Geissler, and Kinzel. Synchronization of unidirectional time delay chaotic networks and the greatest common divisor. EPL (Europhysics Letters), 93(6):60003, 2011.

[15] C. Leibold and J. L. van Hemmen. Spiking neurons learning phase delays: How mammals may develop auditory time-difference sensitivity. Phys. Rev. Lett., 94(16):168102, Apr. 2005.

[16] X. Li, A. B. Cohen, T. E. Murphy, and R. Roy. Scalable parallel physical random number generator based on a superluminescent led. Optics Lett., 36:1020, 2011.

[17] L. Lücken, J. Pade, and S. Yanchuk. Reduction of interaction delays in networks. arXiv:1206.1170, 2012.

[18] L. Lücken, J. P. Pade, S. Yanchuk, and K. Knauer. in preparation.

[19] R. M. Memmesheimer and M. Timme. Designing complex networks. Physica D, 224(1-2):182-201, Dec. 2006.

[20] P. Perlikowski, S. Yanchuk, O. V. Popovych, and P. A. Tass. Periodic patterns in a ring of delay-coupled oscillators. Phys. Rev. E, 82(3):036208, Sep 2010.

[21] O. V. Popovych, S. Yanchuk, and P. A. Tass. Delay- and coupling-induced firing patterns in oscillatory neural loops. Phys. Rev. Lett., 107:228102, 2011.

[22] R. Vicente, S. Tang, J. Mulet, C. R. Mirasso, and J.-M. Liu. Synchronization properties of two self-oscillating semiconductor lasers subject to delayed optoelectronic mutual coupling. Phys. Rev. E, 73:047201, 2006.

[23] M. Wolfrum, S. Yanchuk, P. Hövel, and E. Schöll. Complex dynamics in delay-differential equations with large delay. Eur. Phys. J. Special Topics, 191:91-103, 2010.

[24] S. Yanchuk. Discretization of frequencies in delay coupled oscillators. Phys. Rev. E, 72:036205, 2005.

[25] S. Yanchuk and P. Perlikowski. Delay and periodicity. Phys. Rev. E, 79(4):046221, 2009.

[26] S. Yanchuk, P. Perlikowski, O. V. Popovych, and P. A. Tass. Variability of spatio-temporal patterns in non-homogeneous rings of spiking neurons. Chaos, 21:047511, 2011.