Summary

Proceedings of the 2013 International Symposium on Nonlinear Theory and its Applications

2013

Session Number:C2L-D

Session:

Number:425

A Hyperchaotic Circuit with Impulsive Switching Controlled by Refractory Threshold and Spike-Train Input

Kazuki Yotsuji,  Toshimichi Saito,  Kunihiko Mitsubori,  

pp.425-428

Publication Date:

Online ISSN:2188-5079

DOI:10.15248/proc.2.425

PDF download (1.1MB)

Summary:
This paper studies a continuous-time non-autonomous spiking oscillators that can exhibit hyperchaos. The circuit has a firing switch depending on the threshold of a state variable and periodic clock signal. As parameters vary, the circuit can exhibit a variety of chaotic/periodic spike-trains. We analyze the spike-trains by three tools: the return map, the histogram and the recurrence plot. Using these tools, we investigate characteristics of typical spike-trains.

References:

[1] E. M. Izhikevich, Resonate-and-fire neurons, Neural Netw., 14, pp. 883-894, 2001

[2] E. M. Izhikevich, Simple Model of Spiking Neurons, IEEE Trans. Neural Networks, 14, 6, pp. 1569-1572, 2003.

[3] Y. Yamashita and H. Torikai, A Novel PWC Spiking Neuron Model: Neuron-Like Bifurcation Scenarios and Responses, IEEE Trans. Circuits Syst. I, 59, 11, pp. 2678-2691, 2012.

[4] S. R. Campbell, D. Wang, and C. Jayaprakash, Synchrony and desynchrony in integrate-and-fire oscillators, Neural Comput., 11, pp. 1595-1619, 1999

[5] G. M. Maggio, N. Rulkov, and L. Reggiani, Pseudo-chaotic time hopping for UWB impulse radio, IEEE Trans. Circuits Syst. I, 48, 12, pp. 1424-1435, 2001

[6] H. Torikai and T. Nishigami, An artificial chaotic spiking neuron inspired by spiral ganglion cell: parallel spike encoding, theoretical analysis, and electronic circuit implementation, Neural Networks, 22, pp. 664-673, 2009.

[7] J. P. Eckmann, S. O. Kamphorst, and D. Ruelle, Recurrence Plots of Dynamical Systems, Europhysics Letters, 5, pp. 973-977, 1987

[8] M. Koebbe, and G. M. Kress, Use of recurrence plot in the analysis of Time-Series Data, Nonlinear Modeling and Forecasting, pp. 361-378, 1992

[9] K. Mitsubori and T. Saito, Dependent switched capacitor chaos generator and its synchronization, IEEE Trans. Circuit Syst. I, 44, 12, pp. 1122-1128, 1997

[10] K. Mitsubori and T. Saito,Mutually Pulse-coupled Chaotic Circuits by using Dependent Switched Capacitors, IEEE Trans. Circuits Syst. I, 47, 10, pp. 1469-1478, 2000.

[11] H. Nakano and T. Saito, Basic dynamics from a pulsecoupled network of autonomous integrate-and-fire chaotic circuits, IEEE Trans. Neural Networks, 13, 1, pp. 92-100, 2002.

[12] K. Miyachi, H. Nakano and T. Saito, Response of a simple dependent switched capacitor circuit to a pulse-train input, IEEE Trans. Circuits Syst. I, 50, 9, pp. 1180-1187, 2003.

[13] H. Nakano, T. Saito, Grouping Synchronization in a Pulse-Coupled Network of Chaotic Spiking Oscillators, IEEE Trans. Neural Networks, 15, 5, pp. 1018-1026, 2004

[14] Y. Takahashi, H. Nakano and T. Saito, A simple hyperchaos generator based on impulsive switching, IEEE Trans. Circuits Syst. II, 51, 9, pp. 468-472, 2004.

[15] Y. Takahashi, H. Nakano and T. Saito, Hyperchaotic spiking oscillators with periodic pulse-train input, IEEE Trans. Circuits Syst. II, 52, 6, pp. 344-348, 2005.

[16] Y. Kobayashi, H. Nakano and T. Saito, A Simple Chaotic Circuit with Impulsive Switch Depending on Time and State, Nonlinear Dynamics, Springer, 44, pp. 73-79, 2006

[17] K. Yotsuji, S. Imai, K. Mitsubori and T. Saito, Basic Analysis Tools of Spike-Trains in Chaotic Spiking Oscillators, Proc. NDES, pp. 274-277, 2012.